On the Study of Nonlinear Capillarity Models Through Weighted Sobolev Spaces with Dirichlet Boundary Conditions
Abstract
1. Introduction
2. Preliminaries and Notations
- ,
- where .
3. Discretization of the Problem
- Assertion 1. We claim that the operator A is monotone.
- Assertion 2. We claim that the operator A is coercive.
- Assertion 3. Finally, we claim that the operator A is bounded.
4. Existence and Uniqueness of Weak Solutions for Problem (1)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Gennes, P.G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: New York, NY, USA, 2004. [Google Scholar]
- Finn, R. Equilibrium Capillary Surfaces; Springer: New York, NY, USA, 1986. [Google Scholar]
- Quéré, D. Wetting and Roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99. [Google Scholar] [CrossRef]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Concus, P.; Finn, R. On Capillary Free Surfaces in the Absence of Gravity. Acta Math. 1974, 132, 207–223. [Google Scholar] [CrossRef]
- Bico, J.; Reyssat, M.; Quéré, D. Adhesion and Wetting of Soft Surfaces. Soft Matter 2013, 9, 4916–4923. [Google Scholar]
- Chakraborty, S. Capillarity and Wetting at Small Scales: Fundamentals and Applications. Soft Matter 2020, 16, 4786–4802. [Google Scholar]
- Darhuber, A.A.; Troian, S.M. Principles of Microfluidic Actuation by Modulation of Surface Stresses. Annu. Rev. Fluid Mech. 2005, 37, 425–455. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
- Antontsev, S.N.; Shmarev, S.I. A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions. Nonlinear Anal. 2005, 60, 515–545. [Google Scholar] [CrossRef]
- Růžička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin, Germany, 2000. [Google Scholar]
- Benedikt, J.; Girg, P.; Kotrla, L.; Takáč, P. The Origin of the p-Laplacian and A. Missbach. Electron. J. Differ. Equ. 2018, 2018, 1–23. [Google Scholar]
- Ni, W.M.; Serrin, J. Existence and non-existence theorems for ground states for quasilinear partial differential equations. Atti Conveg. Lincei 1985, 77, 231–257. [Google Scholar]
- Ni, W.M.; Serrin, J. Non-existence theorems for quasilinear partial differential equations. Rend. Circ. Mat. Palermo Suppl. 1985, 8, 171–185. [Google Scholar]
- Rodrigues, M.M. Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators. Mediterr. J. Math. 2012, 9, 211–223. [Google Scholar] [CrossRef]
- Shokooh, S.; Afrouzi, G.A.; Heidarkhani, S. Multiple solutions for p-Laplacian-like problems with Neumann condition. Acta Univ. Apulensis 2017, 49, 111–128. [Google Scholar]
- Drábek, P.; Kufner, A.; Nicolosi, F. Nonlinear Elliptic Equations, Singular and Degenerate Cases; University of West Bohemia: Pilsen, Czech Republic, 1996. [Google Scholar]
- Lions, J.L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires; Dunod et Gauthier-Villars: Paris, France, 1969. [Google Scholar]
- Chipot, M. Elliptic Equations: An Introductory Course; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hmidouch, L.; Badgaish, M. Analysis of weighted Sobolev space solutions for nonlinear capillarity problem with Dirichlet boundary conditions. Int. J. Anal. Appl. 2022, 23, 122. [Google Scholar] [CrossRef]
- Aydin, I. Weighted variable Sobolev spaces and capacity. J. Funct. Spaces Appl. 2012, 2012, 132690. [Google Scholar] [CrossRef]
- Heinonen, J.; Kilpeläinen, T.; Martio, O. Nonlinear Potential Theory of Degenerate Elliptic Equations; Dover Publications: Mineola, NY, USA, 2006. [Google Scholar]
- Turesson, B. Nonlinear Potential Theory and Weighted Sobolev Spaces; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1736. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badgaish, M.; Hmidouch, L.; Hmidouch, N. On the Study of Nonlinear Capillarity Models Through Weighted Sobolev Spaces with Dirichlet Boundary Conditions. Mathematics 2025, 13, 3353. https://doi.org/10.3390/math13203353
Badgaish M, Hmidouch L, Hmidouch N. On the Study of Nonlinear Capillarity Models Through Weighted Sobolev Spaces with Dirichlet Boundary Conditions. Mathematics. 2025; 13(20):3353. https://doi.org/10.3390/math13203353
Chicago/Turabian StyleBadgaish, Manal, Lhoucine Hmidouch, and Nacir Hmidouch. 2025. "On the Study of Nonlinear Capillarity Models Through Weighted Sobolev Spaces with Dirichlet Boundary Conditions" Mathematics 13, no. 20: 3353. https://doi.org/10.3390/math13203353
APA StyleBadgaish, M., Hmidouch, L., & Hmidouch, N. (2025). On the Study of Nonlinear Capillarity Models Through Weighted Sobolev Spaces with Dirichlet Boundary Conditions. Mathematics, 13(20), 3353. https://doi.org/10.3390/math13203353
