Microwave-Enabled Two-Step Scheme for Continuous Variable Quantum Communications in Integrated Superconducting
Abstract
1. Introduction
2. The Microwave-Based CV-QSDC
2.1. Two-Step CV-QSDC Protocol
2.2. Generation of Two-Mode Squeezed Microwave States
2.3. Data Post-Processing for Messages Recovery
3. Performance Analysis
3.1. Effect of Channel Loss and Noise
3.2. Derivation of Effective Information Transmission Rate
3.3. Security Analysis for Collective Attacks
3.4. Security with Finite-Size Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Phase Noise
References
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef]
- Liao, Q.; Xiao, G.; Zhong, H.; Guo, Y. Multi-label learning for improving discretely-modulated continuous- variable quantum key distribution. New J. Phys. 2021, 22, 083086. [Google Scholar] [CrossRef]
- Zhou, K.; Yi, C.; Yan, W.; Hou, Z.; Zhu, H.; Xiang, G.; Li, C.; Guo, G. Experimental Realization of Genuine Three-Copy Collective Measurements for Optimal Information Extraction. Phys. Rev. Lett. 2025, 134, 210201. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Niu, S.; Han, Z.; Li, Y.; Chen, R.; Wang, X.; Gao, M.; Chen, L.; Song, Y.; Zhou, Z.; et al. Quantum-enhanced imaging for characterizing anisotropic material. npj Quantum Inf. 2025, 11, 57. [Google Scholar] [CrossRef]
- Deng, F.; Long, G.; Liu, X. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 2003, 68, 042317. [Google Scholar]
- Deng, F.; Long, G. Secure direct communication with a quantum one-time pad. Phys. Rev. A 2004, 69, 052319. [Google Scholar] [CrossRef]
- Wang, C.; Deng, F.; Li, Y.; Liu, X.; Long, G. Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 2005, 71, 044305. [Google Scholar] [CrossRef]
- Niu, P.; Zhou, Z.; Lin, Z.; Sheng, Y.; Yin, L.; Long, G. Measurement-device-independent quantum communication without encryption. Sci. Bull. 2018, 63, 1345–1350. [Google Scholar]
- Zhou, Z.; Niu, P.; Sheng, Y.; Yin, L.; Long, G. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 2019, 63, 230362. [Google Scholar] [CrossRef]
- Zhou, L.; Sheng, Y.; Long, G. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 2020, 65, 12–20. [Google Scholar] [CrossRef]
- Zhong, H.; Ye, W.; Zuo, Z.; Huang, D.; Guo, Y. Kalman filter-enabled parameter estimation for simultaneous quantum key distribution and classical communication scheme over a satellite-mediated link. Opt. Express 2022, 30, 5981. [Google Scholar]
- Liao, Q.; Xiao, G.; Xu, C.-G.; Xu, Y.; Guo, Y. Discretely modulated continuous-variable quantum key distribution with an untrusted entanglement source. Phys. Rev. A 2020, 102, 032604. [Google Scholar] [CrossRef]
- Pirandola, S.; Braunstein, S.L.; Mancini, S.; Lloyd, S. Quantum direct communication with continuous variables. Europhys. Lett. 2018, 84, 20013. [Google Scholar]
- Fesquet, F.; Kronowetter, F.; Renger, M.; Gross, R.; Fedorov, K.G. Demonstration of microwave single-shot quantum key distribution. Nat. Commun. 2024, 15, 7544. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, K.; Renger, M.; Pogorzalek, S.; Di Candia, R.; Chen, Q.; Nojiri, Y.; Inomata, K.; Nakamura, Y.; Partanen, M.; Marx, A.; et al. Experimental quantum teleportation of propagating microwaves. Sci. Adv. 2021, 7, 0891. [Google Scholar]
- Fedorov, K.G.; Pogorzalek, S.; Las Heras, U.; Sanz, M.; Yard, P.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Inomata, K.; et al. Finite-time quantum entanglement in propagating squeezed microwaves. Sci. Rep. 2018, 8, 6416. [Google Scholar] [CrossRef]
- Pogorzalek, S.; Fedorov, K.G.; Xu, M.; Parra-Rodriguez, A.; Sanz, M.; Fischer, M.; Xie, E.; Inomata, K.; Nakamura, Y.; Solano, E.; et al. Secure quantum remote state preparation of squeezed microwave states. Nat. Commun. 2019, 10, 2604. [Google Scholar] [CrossRef]
- Menzel, E.P.; Di Candia, R.; Deppe, F.; Eder, P.; Zhong, L.; Ihmig, M.; Haeberlein, M.; Baust, A.; Hoffmann, E.; Ballester, D.; et al. Path Entanglement of Continuous-Variable Quantum Microwaves. Phys. Rev. Lett. 2012, 109, 250502. [Google Scholar] [CrossRef]
- Paul, J.; Kunz-Jacques, S.; Leverrier, A. Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 2011, 84, 062317. [Google Scholar]
- Lodewyck, J.; Bloch, M.; Fossier, S.; Karpo, E.; Diamanti, E.; Debuisschert, T.; Cerf, N.J.; Tualle-Brouri, R.; McLaughlin, S.W.; Grangier, P. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 2007, 76, 042305. [Google Scholar] [CrossRef]
- Usenko, V.C.; Laszlo, R.; Radim, F. Entanglement-based continuous-variable quantum key distribution with multimode states and detectors. Phys. Rev. A 2014, 90, 062326. [Google Scholar] [CrossRef]
- Tene, A.G.; Anne, M.; Stephanie, K. Error correction based artificial neural network in multi-modes CV-QKD with simultaneous type-I and type-II parametric-down conversion entangled photon source. Opt. Commun. 2024, 565, 130681. [Google Scholar] [CrossRef]
- Leverrier, A. Composable Security Proof for Continuous-Variable Quantum Key Distribution with Coherent States. Phys. Rev. Lett. 2015, 114, 042317. [Google Scholar] [CrossRef] [PubMed]
- Leverrier, A.; Grosshans, F.; Grangier, P. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 2010, 81, 062343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Mao, L.; Wang, W.; Wang, Y.; Zhang, H.; Guo, Y. Microwave-Enabled Two-Step Scheme for Continuous Variable Quantum Communications in Integrated Superconducting. Mathematics 2025, 13, 3263. https://doi.org/10.3390/math13203263
Mao Y, Mao L, Wang W, Wang Y, Zhang H, Guo Y. Microwave-Enabled Two-Step Scheme for Continuous Variable Quantum Communications in Integrated Superconducting. Mathematics. 2025; 13(20):3263. https://doi.org/10.3390/math13203263
Chicago/Turabian StyleMao, Yun, Lei Mao, Wanyi Wang, Yijun Wang, Hang Zhang, and Ying Guo. 2025. "Microwave-Enabled Two-Step Scheme for Continuous Variable Quantum Communications in Integrated Superconducting" Mathematics 13, no. 20: 3263. https://doi.org/10.3390/math13203263
APA StyleMao, Y., Mao, L., Wang, W., Wang, Y., Zhang, H., & Guo, Y. (2025). Microwave-Enabled Two-Step Scheme for Continuous Variable Quantum Communications in Integrated Superconducting. Mathematics, 13(20), 3263. https://doi.org/10.3390/math13203263