Nonlinear Transmission Line: Shock Waves and the Simple Wave Approximation
Abstract
1. Introduction
2. The Circuit Equations
3. Strong Dissipation
3.1. The ODE Which Does Not Contain Explicitly the Independent Variable
3.2. Back to the Transmission Line
4. Weak Dissipation
5. The Simple Waves in a Lossless Nonlinear Transmission Line
Funding
Data Availability Statement
Conflicts of Interest
References
- Whitham, G.B. Linear and Nonlinear Waves; John Wiley & Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Kengne, E.; Liu, W.M.; English, L.Q.; Malomed, B.A. Ginzburg–Landau models of nonlinear electric transmission networks. Phys. Rep. 2022, 982, 1–124. [Google Scholar] [CrossRef]
- Congy, T.; El, G.A.; Hoefer, M.A. Interaction of linear modulated waves and unsteady dispersive hydrodynamic states with application to shallow water waves. J. Fluid Mech. 2019, 875, 1145–1174. [Google Scholar] [CrossRef]
- French, D.M.; Hoff, B.W. Spatially dispersive ferrite nonlinear transmission line with axial bias. IEEE Trans. Plasma Sci. 2014, 42, 3387–3390. [Google Scholar] [CrossRef]
- Nouri, B.; Nakhla, M.S.; Achar, R. Efficient simulation of nonlinear transmission lines via model-order reduction. IEEE Trans. Microw. Theory Tech. 2017, 65, 673–683. [Google Scholar] [CrossRef]
- Neto, L.P.S.; Rossi, J.O.; Barroso, J.J.; Schamiloglu, E. Hybrid nonlinear transmission lines used for RF soliton generation. IEEE Trans. Plasma Sci. 2018, 46, 3648–3652. [Google Scholar] [CrossRef]
- Nikoo, M.S.; Hashemi, S.M.-A.; Farzaneh, F. Theoretical analysis of RF pulse termination in nonlinear transmission lines. IEEE Trans. Microw. Theory Tech. 2018, 66, 4757–4764. [Google Scholar]
- Silva, L.C.; Rossi, J.O.; Rangel, E.G.L.; Raimundi, L.R.; Schamiloglu, E. Study of pulsed RF signal extraction and irradiation from a capacitive nonlinear transmission line. Int. J. Adv. Eng. Res. Sci. 2018, 5, 121. [Google Scholar] [CrossRef]
- Wang, Y.; Lang, L.-J.; Lee, C.H.; Zhang, B.; Chong, Y.D. Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Comm. 2019, 10, 1102. [Google Scholar] [CrossRef] [PubMed]
- Range, E.G.L.; Rossi, J.O.; Barroso, J.J.; Yamasaki, F.S.; Schamiloglu, E. Practical constraints on nonlinear transmission lines for RF generation. IEEE Trans. Plasma Sci. 2019, 47, 1000–1016. [Google Scholar]
- Kyuregyan, A.S. Large-amplitude shock electromagnetic wave in a nonlinear transmission line based on a distributed semiconductor diode. Semiconductors 2019, 53, 511–518. [Google Scholar] [CrossRef]
- Akem, N.A.; Dikande, A.M.; Essimbi, B.Z. Leapfrogging of electrical solitons in coupled nonlinear transmission lines: Effect of an imperfect varactor. SN Appl. Sci. 2020, 2, 21. [Google Scholar] [CrossRef]
- Fairbanks, A.J.; Darr, A.M.; Garner, A.L. A review of nonlinear transmission line system design. IEEE Access 2020, 8, 148606–148621. [Google Scholar] [CrossRef]
- Landauer, R. Shock waves in nonlinear transmission lines and their effect on parametric amplification. IBM J. Res. Dev. 1960, 4, 391–401. [Google Scholar] [CrossRef]
- Peng, S.T.; Landauer, R. Effects of dispersion on steady state electromagnetic shock profiles. IBM J. Res. Dev. 1973, 17, 299–306. [Google Scholar] [CrossRef]
- Kogan, E. Shock waves in nonlinear transmission lines. Phys. Stat. Sol. (b) 2025, 262, 2400335. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, Volume 6; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Rabinovich, M.I.; Trubetskov, D.I. Oscillations and Waves; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1989. [Google Scholar]
- Vinogradova, M.B.; Rudenko, O.V.; Sukhorukov, A.P. The Wave Theory; Nauka Publishers: Moscow, Russia, 1990. [Google Scholar]
- Kogan, E. The Kinks, the Solitons and the Shocks in Series-Connected Discrete Josephson Transmission Lines. Phys. Stat. Sol. (b) 2022, 259, 2200160. [Google Scholar] [CrossRef]
- Kogan, E. Shock wave in series connected Josephson transmission line: Theoretical foundations and effects of resistive elements. J. Appl. Phys. 2021, 130, 013903. [Google Scholar] [CrossRef]
- Kamchatnov, A.M. Theory of Nonlinear Waaves [in Russian]; Printing House of School of Economics: Moscow, Russia, 2024. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards: Washington, DC, USA, 1964.
- Goursat, E. Course d’Analyse Mathematique, Tome I; Gautier-Villars: Paris, France, 1933. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Elsevier Inc.: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Krehl, O.K. History of Shock Waves, Explosions and Impact: A chronological and Biographical Reference; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Logan, J.D. An Introduction to Nonlinear Partial Differential Equations, 2nd ed.; John Wiley & Sons, Inc. Publication: Hoboken, NJ, USA, 2008. [Google Scholar]
- Drazin, P.G.; Johnson, R.S. Solitons: An Introduction; Cambridge University Press: Cambridge, UK, 1989; Volume 2. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogan, E. Nonlinear Transmission Line: Shock Waves and the Simple Wave Approximation. Mathematics 2025, 13, 3215. https://doi.org/10.3390/math13193215
Kogan E. Nonlinear Transmission Line: Shock Waves and the Simple Wave Approximation. Mathematics. 2025; 13(19):3215. https://doi.org/10.3390/math13193215
Chicago/Turabian StyleKogan, Eugene. 2025. "Nonlinear Transmission Line: Shock Waves and the Simple Wave Approximation" Mathematics 13, no. 19: 3215. https://doi.org/10.3390/math13193215
APA StyleKogan, E. (2025). Nonlinear Transmission Line: Shock Waves and the Simple Wave Approximation. Mathematics, 13(19), 3215. https://doi.org/10.3390/math13193215