A Simulated Annealing Approach for the Homogeneous Capacitated Vehicle Routing Problem
Abstract
1. Introduction
2. Literature Review
2.1. Exact Methods
2.2. Heuristic Methods
2.3. Metaheuristic Methods
3. Mathematical Model
- Visit each client (node) only once.
- Start the tour and return to the starting point (depot).
- Do not exceed vehicle capacity.
- IndicesThe model indices are as follows:
- i = starting node ;
- j = arrival node ;
- n = total nodes;
- k = vehicle .
- ParametersThe parameters of the problem are as follows:
- = transport cost from node i to node j;
- = demand at node j;
- M = capacity of resource k;
- n = number of customers.
- VariablesThe variables defined are as follows:
- = 1 if the vehicle k is assigned to traverse the arc from node i to node j or zero otherwise.
- = 1 if the path is from i to j or zero otherwise.
- K = number of vehicles to be used.
4. Methodology
Algorithm 1 Pseudocode of the main function |
|
4.1. Initial Solution
4.2. Simulated Annealing
- Same-route swapping (): The first perturbation mechanism employed is the swapping of two customers on the same route. To achieve this, two customers are randomly selected and swap places. With this change in order, the cost of the solution will also change, as it will alter the total distance of that route and, consequently, the cost of the entire solution. This swapping does not alter the total route capacity, as both customer demands were previously considered.
- Interchanging Different Routes (): The second neighbourhood used is similar to the previous one, except that the routes are different. That is, two clients or nodes are interchanged, but they belong to different routes. Two clients are randomly selected (this time belonging to different routes), and before performing the interchange, the feasibility of the interchange is verified. This interchange requires verifying the capacities of both vehicles to avoid exceeding the maximum capacity M of any vehicle.
- Relocate (): For the third neighborhood, only one node is randomly selected from any route and inserted in the same route in another position. The client can be inserted in any order on the route: it is inserted randomly in any position.
- Reinsertion (): For the fourth neighborhood, one client is randomly selected from any route , and inserted in another route . Upon insertion of into , it was verified that the sum of demand of did not exceed the maximum capacity M. The node is removed from the route to which it was previously assigned and reinserted into another. Again, the client can be inserted randomly in any position of the receiving route .
Algorithm 2 Pseudocode of SA |
|
Note: is updated according to the acceptance percentage. If the acceptance percentage of a temperature is less than 95%, will take the value of . |
4.3. Double-Neighborhood Search
4.4. Parameters of SA
5. Results
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dantzing, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Clarke, G.; Wright, J.R. Scheduling of Vehicle Routing Problem from a Central Depot to a Number of Delivery Points. Oper. Res. 1964, 12, 568–581. [Google Scholar] [CrossRef]
- Balinski, M.L.; Quandt, R.E. On an Integer Program for a Delivery Problem. Oper. Res. 1964, 12, 300–304. [Google Scholar] [CrossRef]
- Fukasawa, R.; Longo, H.; Lysgaard, J.; de Aragão, M.P.; Reis, M.; Uchoa, E.; Werneck, R.F. Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing Problem. Math. Program. 2006, 106, 491–511. [Google Scholar] [CrossRef]
- Laporte, G. The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992, 59, 345–358. [Google Scholar] [CrossRef]
- Akhtar, M.; Hannan, M.A.; Begum, R.A.; Basri, H.; Scavino, E. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization. Waste Manag. 2017, 61, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Gillett, B.E.; Miller, L.R. A Heuristic Algorithm for the Vehicle-Dispatch Problem. Oper. Res. 1974, 22, 340–349. [Google Scholar] [CrossRef]
- Shin, K.; Han, S. A Centroid-based Heuristic Algorithm for the Capacitated Vehicle Routing Problem. Comput. Inform. 2011, 30, 721–732. [Google Scholar]
- Ekayanti, E.; Sugianto y Efendi, I.B. Capacitated Vehicle Routing Problem (CVRP) with Sweep and Nearest Neighbor Algorithm. Sinergi Int. J. Logist. 2024, 2, 17–29. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Ahmad, M.S.; Mostafa, S.A. Using genetic algorithm in implementing capacitated vehicle routing problem. In Proceedings of the 2012 International Conference on Computer & Information Science (ICCIS), Kuala Lumpur, Malaysia, 12–14 June 2012; Volume 1, pp. 257–262. [Google Scholar]
- Baker, B.M.; Ayechew, M. A genetic algorithm for the vehicle routing problem. Comput. Oper. Res. 2003, 30, 787–800. [Google Scholar] [CrossRef]
- Lin, N.; Shi, Y.; Zhang, T.; Wang, X. An effective order-aware hybrid genetic algorithm for capacitated vehicle routing problems in internet of things. IEEE Access 2019, 7, 86102–86114. [Google Scholar] [CrossRef]
- Teoh, B.E.; Ponnambalam, S.G.; Kanagaraj, G. Differential evolution algorithm with local search for capacitated vehicle routing problem. Int. J. Bio-Inspired Comput. 2015, 7, 321–342. [Google Scholar] [CrossRef]
- Caballero-Morales, S.O.; Martínez-Flores, J.L.; Sánchez-Partida, D. An evolutive tabu-search metaheuristic approach for the capacitated vehicle routing problem. In New Perspectives on Applied Industrial Tools and Techniques; Springer International Publishing: Cham, Switzerland, 2017; pp. 477–495. [Google Scholar] [CrossRef]
- Mazzeo, S.; Loiseau, I. An ant colony algorithm for the capacitated vehicle routing. Electron. Notes Discret. Math. 2004, 18, 181–186. [Google Scholar] [CrossRef]
- Bell, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem. Adv. Eng. Inform. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, S.; Qin, J.; Zou, K.; Zhou, S. Multi-strategy ant colony optimization with k-means clustering algorithm for capacitated vehicle routing problem. Clust. Comput. 2025, 28, 202. [Google Scholar] [CrossRef]
- Yesodha, R.; Amudha, T. An improved firefly algorithm for capacitated vehicle routing optimization. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; pp. 163–169. [Google Scholar] [CrossRef]
- Altabeeb, A.M.; Mohsen, A.M.; Ghallab, A. An improved hybrid firefly algorithm for capacitated vehicle routing problem. Appl. Soft Comput. 2019, 84, 105728. [Google Scholar] [CrossRef]
- Altabeeb, A.M.; Mohsen, A.M.; Abualigah, L.; Ghallab, A. Solving capacitated vehicle routing problem using cooperative firefly algorithm. Appl. Soft Comput. 2021, 108, 107403. [Google Scholar] [CrossRef]
- Szeto, W.Y.; Wu, Y.; Ho, S.C. An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 2011, 215, 126–135. [Google Scholar] [CrossRef]
- Alssager, M.; Othman, Z.A.; Ayob, M.; Mohemad, R.; Yuliansyah, H. Hybrid cuckoo search for the capacitated vehicle routing problem. Symmetry 2020, 12, 2088. [Google Scholar] [CrossRef]
- Pham, V.H.S.; Nguyen, V.N.; Nguyen Dang, N.T. Applying a Hybrid Gray Wolf-Enhanced Whale Optimization Algorithm to the Capacitated Vehicle Routing Problem. J. Adv. Transp. 2025, 2025, 5584617. [Google Scholar] [CrossRef]
- Tarantilis, C.D.; Kiranoudis, C.T.; Vassiliadis, V.S. A list based threshold accepting algorithm for the capacitated vehicle routing problem. Int. J. Comput. Math. 2002, 79, 537–553. [Google Scholar] [CrossRef]
- Gendreau, M.; Hertz, A.; Laporte, G. A tabu search heuristic for the vehicle routing problem. Manag. Sci. 1994, 40, 1276–1290. [Google Scholar] [CrossRef]
- Obaid, O.I. Solving capacitated vehicle routing problem (cvrp) using tabu search algorithm (tsa). Ibn AL-Haitham J. Pure Appl. Sci. 2018, 31, 199–209. [Google Scholar] [CrossRef]
- Van Breedam, A. Improvement heuristics for the Vehicle Routing Problem based on simulated annealing. Eur. J. Oper. Res. 1995, 86, 480–490. [Google Scholar] [CrossRef]
- İlhan, İ. An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem. Swarm Evol. Comput. 2021, 64, 100911. [Google Scholar] [CrossRef]
- Mari, F.; Mahmudy, W.F.; Santoso, P.B. An improved simulated annealing for the capacitated vehicle routing problem (CVRP). J. Ilmiah Kursor 2018, 9. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, Q.; Kaku, I.; Mladenovic, N. Variable neighbourhood simulated annealing algorithm for capacitated vehicle routing problems. Eng. Optim. 2014, 46, 562–579. [Google Scholar] [CrossRef]
- Lin, S.W.; Ying, K.C.; Lee, Z.J.; Hsi, F.H. Applying simulated annealing approach for capacitated vehicle routing problems. In Proceedings of the 2006 IEEE International Conference on Systems, Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; Volume 1, pp. 639–644. [Google Scholar]
- Hosseinabadi, A.A.R.; Rostami, N.S.H.; Kardgar, M.; Mirkamali, S.; Abraham, A. A new efficient approach for solving the capacitated vehicle routing problem using the gravitational emulation local search algorithm. Appl. Math. Model. 2017, 49, 663–679. [Google Scholar] [CrossRef]
- Fares, I.; Hassanien, A.E.; Rizk-Allah, R.M.; Farouk, R.M.; Abo-donia, H.M. Solving capacitated vehicle routing problem with route optimisation based on equilibrium optimiser algorithm. Int. J. Comput. Sci. Math. 2023, 17, 13–27. [Google Scholar] [CrossRef]
- Fitzpatrick, J.; Ajwani, D.; Carroll, P. A scalable learning approach for the capacitated vehicle routing problem. Comput. Oper. Res. 2024, 171, 106787. [Google Scholar] [CrossRef]
- Pichpibul, T.; Kawtummachai, R. An improved Clarke and Wright savings algorithm for the capacitated vehicle routing problem. ScienceAsia 2012, 38, 307–318. [Google Scholar] [CrossRef]
- Glover, F. Tabu search—Part I. ORSA J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef]
- Sajid, M.; Jafar, A.; Sharma, S. Hybrid genetic and simulated annealing algorithm for capacitated vehicle routing problem. In Proceedings of the 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), Waknaghat, India, 6–8 November 2020; pp. 131–136. [Google Scholar]
- İlhan, İ. A population based simulated annealing algorithm for capacitated vehicle routing problem. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 1217–1235. [Google Scholar] [CrossRef]
- Herrera Restrepo, J.; Medina, V.P. Un problema logístico de programación de vehículos con capacidad finita. Sci. Tech. 2008, 1, 253–258. [Google Scholar]
- González Vargas, G.; González Aristizábal, F. Metaheurísticas aplicadas al ruteo de vehículos. Un caso de estudio: Parte 1: Formulación del problema. Ing. Investig. 2006, 26, 149–156. [Google Scholar] [CrossRef]
- Christofides, N.; Eilon, S. An algorithm for the vehicle-dispatching problem. J. Oper. Res. Soc. 1969, 20, 309–318. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by Simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Nazif, H.; Lee, L.S. Optimised crossover genetic algorithm for capacitated vehicle routing problem. Appl. Math. Model. 2012, 36, 2110–2117. [Google Scholar] [CrossRef]
- Mester, D.; Bräysy, O. Active guided evolution strategies for large-scale vehicle routing problems with time windows. Comput. Oper. Res. 2005, 32, 1593–1614. [Google Scholar] [CrossRef]
- Alba, E.; Dorronsoro, B. Computing nine new best-so-far solutions for capacitated VRP with a cellular genetic algorithm. Inf. Process. Lett. 2006, 98, 225–230. [Google Scholar] [CrossRef]
- Augerat, P.; Naddef, D.; Belenguer, J.M.; Benavent, E.; Corberan, A.; Rinaldi, G. Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem; Laboratoire ARTEMIS: Janzé, France, 1995. [Google Scholar]
- Fisher, M.L. Optimal solution of vehicle routing problems using minimum k-trees. Oper. Res. 1994, 42, 626–642. [Google Scholar] [CrossRef]
- Taillard, É. Parallel iterative search methods for vehicle routing problems. Networks 1993, 23, 661–673. [Google Scholar] [CrossRef]
Instance | BKS | KMACO | CHFA | Dyn-BCP | DELS | ICW | OHGA | SAHDN | Time | Avg |
---|---|---|---|---|---|---|---|---|---|---|
A-n32-k5 | 784 * | 784 * | 784 * | - | 784 * | 784 * | 784 * | 784 * | 56.11 | 784 * |
A-n33-k5 | 661 * | 661 * | 661 * | - | 661 * | 661 * | 661 * | 661 * | 53.64 | 661 * |
A-n33-k6 | 742 * | 742 * | 742 * | - | 742 * | 742 * | 742 * | 742 * | 57.14 | 742 * |
A-n34-k5 | 778 * | 778 * | 778 * | - | 778 * | 778 * | 778 * | 778 * | 55.56 | 778 * |
A-n36-k5 | 799 * | 799 * | 799 * | - | 799 * | 799 * | 799 * | 799 * | 56.33 | 799 * |
A-n37-k5 | 669 * | 669 * | 669 * | 669 * | 669 * | 669 * | 669 * | 669 * | 60.21 | 669 * |
A-n37-k6 | 949 * | 949 * | 949 * | 949 * | 949 * | 949 * | 949 * | 949 * | 58.83 | 949 * |
A-n38-k5 | 730 * | 730 * | 730 * | 730 * | 730 * | 730 * | 730 * | 730 * | 58.83 | 730 * |
A-n39-k5 | 822 * | 822 * | 822 * | 822 * | 822 * | 822 * | 822 * | 822 * | 57.77 | 822.01 |
A-n39-k6 | 831 * | 831 * | 831 * | 831 * | 831 * | 831 * | 833 | 831 * | 64.41 | 832.42 |
A-n44-k6 | 937 * | 937 * | 937 * | 937 * | 937 * | 937 * | 937 * | 937 * | 63.69 | 937 * |
A-n45-k6 | 944 * | 944 * | 944 * | 944 * | 944 * | 944 * | 953 | 944 * | 61.27 | 954.42 |
A-n45-k7 | 1146 * | 1146 * | 1146 * | 1146 * | 1146 * | 1146 * | 1146 * | 1146 * | 70.88 | 1146.05 |
A-n46-k7 | 914 * | 914 * | 914 * | 914 * | 914 * | 914 * | 914 * | 914 * | 73.79 | 914 * |
A-n48-k7 | 1073 * | 1073 * | 1073 * | 1073 * | 1073 * | 1073 * | 1073 * | 1073 * | 73.99 | 1073.22 |
A-n53-k7 | 1010 * | 1010 * | 1010 * | 1010 * | 1010 * | 1010 * | 1017 | 1010 * | 79.55 | 1014.63 |
A-n54-k7 | 1167 * | 1169 | 1167 * | 1167 * | 1167 * | 1167 * | 1167 * | 1167 * | 82.66 | 1167.71 |
A-n55-k9 | 1073 * | 1074 | 1073 * | 1073 * | 1073 * | 1073 * | 1074 | 1073 * | 86.31 | 1073.17 |
A-n60-k9 | 1354 * | 1374 | 1354 * | 1354 * | 1354 * | 1354 * | 1355 | 1354 * | 95.68 | 1357.8 |
A-n61-k9 | 1034 * | 1035 | 1035 | 1034 * | 1035 | 1034 * | 1035 | 1034 * | 83.52 | 1035.49 |
A-n62-k8 | 1288 * | 1297 | 1294 | 1288 * | 1288 * | 1298 | 1308 | 1288 * | 94.8 | 1297.9 |
A-n63-k9 | 1616 * | 1631 | 1616 * | 1616 * | 1624 | 1616 * | 1630 | 1616 * | 89.24 | 1626.98 |
A-n63-k10 | 1314 * | 1327 | 1315 | 1314 * | 1316 | 1314 * | 1329 | 1314 * | 97.54 | 1318.87 |
A-n64-k9 | 1401 * | 1427 | 1411 | 1401 * | 1416 | 1415 | 1416 | 1401 * | 105.22 | 1414.16 |
A-n65-k9 | 1174 * | 1177 | 1177 | 1174 * | 1181 | 1174 * | 1184 | 1174 * | 88.66 | 1179.6 |
A-n69-k9 | 1159 * | 1159 * | 1159 * | 1159 * | 1165 | 1159 * | 1170 | 1159 * | 111.64 | 1166.78 |
A-n80-k10 | 1763 * | 1768 | 1763 * | 1763 * | 1779 | 1772 | 1790 | 1763 * | 118.17 | 1778.59 |
Instance | BKS | KMACO | CHFA | Dyn-BCP | DELS | ICW | OHGA | SAHDN | Time | Avg |
---|---|---|---|---|---|---|---|---|---|---|
B-n31-k5 | 672 * | 672 * | 672 * | - | 672 * | 672 * | 672 * | 672 * | 55.23 | 672 * |
B-n34-k5 | 788 * | 788 * | 788 * | - | 788 * | 788 * | 788 * | 788 * | 64.25 | 788 * |
B-n35-k5 | 955 * | 955 * | 955 * | - | 955 * | 955 * | 955 * | 955 * | 67.5 | 955 * |
B-n38-k6 | 805 * | 805 * | 805 * | 805 * | 805 * | 805 * | 805 * | 805 * | 69.46 | 805.05 |
B-n39-k5 | 549 * | 549 * | 549 * | 549 * | 549 * | 549 * | 549 * | 549 * | 73.73 | 549 * |
B-n41-k6 | 829 * | 829 * | 829 * | 829 * | 829 * | 829 * | 829 * | 829 * | 70.33 | 829.26 |
B-n43-k6 | 742 * | 742 * | 742 * | 742 * | 742 * | 742 * | 742 * | 742 * | 74.85 | 742.02 |
B-n44-k7 | 909 * | 909 * | 909 * | 909 * | 909 * | 909 * | 909 * | 909 * | 80.14 | 909.02 |
B-n45-k5 | 751 * | 751 * | 751 * | 751 * | 751 * | 751 * | 751 * | 751 * | 75.87 | 751.06 |
B-n45-k6 | 678 * | 678 * | 678 * | 678 * | 678 * | 678 * | 680 | 678 * | 67.52 | 681.91 |
B-n50-k7 | 741 * | 741 * | 741 * | 741 * | 741 * | 741 * | 741 * | 741 * | 84.94 | 741 * |
B-n50-k8 | 1312 * | 1317 | 1312 * | 1312 * | 1313 | 1312 * | 1315 | 1312 * | 82.8 | 1312.84 |
B-n51-k7 | 1032 * | 1034 | 1032 * | 1032 * | 1033 | - | (a) | 1032 * | 82.8 | 1312.84 |
B-n52-k7 | 747 * | 747 * | 747 * | 747 * | 747 * | 751 | 747 * | 747 * | 90.04 | 747.06 |
B-n56-k7 | 707 * | 710 | 707 * | 707 * | 707 * | 707 * | 711 | 707 * | 104.99 | 707.68 |
B-n57-k7 | 1153 * | 1165 | - | 1153 * | 1166 | - | (a) | 1153 * | 94.02 | 1202.56 |
B-n57-k9 | 1598 * | 1608 | 1603 | 1598 * | 1599 | 1598 * | 1603 | 1598 * | 101.61 | 1602.12 |
B-n63-k10 | 1496 * | 1530 | 1496 * | 1496 * | 1504 | - | 1531 | 1496 * | 109.48 | 1516.11 |
B-n64-k9 | 861 * | 866 | 861 * | 861 * | 861 * | 861 * | 867 | 861 * | 94.68 | 862.98 |
B-n66-k9 | 1316 * | 1323 | 1316 * | 1316 * | 1322 | 1320 | 1324 | 1316 * | 104.7 | 1321.54 |
B-n67-k10 | 1032 * | 1036 | 1033 | 1032 * | 1032 * | 1032 * | 1042 | 1032 * | 105.49 | 1038.35 |
B-n68-k9 | 1272 * | 1277 | 1273 | 1272 * | 1281 | 1281 | 1290 | 1273 | 113.07 | 1286.63 |
B-n78-k10 | 1221 * | 1228 | 1221 * | 1221 * | 1230 | 1238 | 1245 | 1221 * | 119.66 | 1236.93 |
Instance | BK | CHFA | Dyn-BCP | DELS | ICW | OHGA | SAHDN | Time |
---|---|---|---|---|---|---|---|---|
E-n13-k4 | 247 * | - | 247 * | 247 * | - | - | 247 * | 22.11 |
E-n22-k4 | 375 * | 375 * | 375 * | 375 * | 375 * | 375 * | 375 * | 35.41 |
E-n23-k3 | 569 * | 569 * | 569 * | 569 * | 569 * | 569 * | 569 * | 44 |
E-n30-k3 | 534 * | 534 * | 534 * | 534 * | 534 * | 503 | 534 * | 56.91 |
E-n31-k7 | 379 * | - | 379 * | 390 | - | - | 379 * | 43.01 |
E-n33-k4 | 835 * | 835 * | 835 * | 835 * | 835 * | 835 * | 835 * | 59.92 |
E-n51-k5 | 521 * | 521 * | 521 * | 521 * | 521 * | 521 * | 521 * | 70.12 |
E-n76-k7 | 682 * | 682 * | 682 * | 689 | 686 | 692 | 682 * | 118.54 |
E-n76-k8 | 735 * | 736 | 735 * | 738 | 742 | 740 | 735 * | 99.29 |
E-n76-k10 | 830 * | - | 830 * | 843 | 839 | 843 | 830 * | 92.1 |
E-n76-k14 | 1021 * | - | 1021 * | 1042 | 1027 | 1038 | 1021 * | 91.83 |
E-n101-k8 | 815 * | - | 815 * | 822 | 821 | 822 | 815 * | 217.66 |
E-n101-k14 | 1067 * | 1071 | 1067 * | 1086 | 1084 | 1095 | 1069 | 166.09 |
Instance | BK | CHFA | Dyn-BCP | ICW | OHGA | SAHDN | Time |
---|---|---|---|---|---|---|---|
F-n45-k4 | 724 * | - | 724 * | 724 * | 724 * | 724 * | 77.38 |
F-n72-k4 | 237 * | 237 * | 237 * | 237 * | 237 * | 237 * | 114.02 |
F-n135-k7 | 1162 * | 1163 | 1162 * | 1162 * | - | 1162 * | 938.58 |
Instance | BK | CHFA | Dyn-BCP | SAHDN | Time |
---|---|---|---|---|---|
M-n101-k10 | 820 * | 829 | 820 * | 820 * | 262.62 |
M-n121-k7 | 1034 * | 1034 * | 1034 * | 1034 * | 262.77 |
M-n151-k12 | 1015 * | 1021 | - | 1030 | 702.39 |
M-n200-k16 | 1274 * | - | - | 1355 | 346.85 |
M-n200-k17 | 1275 * | 1289 | - | 1311 | 2076.29 |
Instance | BK | KMACO | CHFA | Dyn-BCP | DELS | ICW | OHGA | SAHDN | Time |
---|---|---|---|---|---|---|---|---|---|
P-n16-k8 | 450 * | 450 * | 450 * | 450 * | 450 * | 450 * | 450 * | 450 * | 24.14 |
P-n19-k2 | 212 * | 212 * | 212 * | 212 * | 212 * | 212 * | 212 * | 212 * | 28.56 |
P-n20-k2 | 216 * | 216 * | 216 * | 216 * | 216 * | 216 * | 216 * | 216 * | 29.46 |
P-n21-k2 | 211 * | 211 * | 211 * | 211 * | 211 * | 211 * | 211 * | 211 * | 32.96 |
P-n22-k2 | 216 * | 216 * | 216 * | 216 * | 216 * | 216 * | 216 * | 216 * | 34.06 |
P-n22-k8 | 603 * | 603 * | 603 * | 603 * | 603 * | 603 * | 603 * | 603 * | 41.41 |
P-n23-k8 | 529 * | 529 * | 529 * | 529 * | 533 | 529 * | 529 * | 529 * | 27.61 |
P-n40-k5 | 458 * | 458 * | 458 * | 458 * | 458 * | 458 * | 458 * | 458 * | 57.6 |
P-n45-k5 | 510 * | 510 * | 510 * | 510 * | 510 * | 510 * | 510 * | 510 * | 62.91 |
P-n50-k7 | 554 * | 556 | 554 * | 554 * | 554 * | 554 * | 556 | 554 * | 65.67 |
P-n50-k8 | 631 * | 643 | 631 * | 631 * | 641 | 631 * | 630 | 632 | 55.88 |
P-n50-k10 | 696 * | 701 | 696 * | 696 * | 696 * | 696 * | 700 | 696 * | 64.69 |
P-n51-k10 | 741 * | 744 | 741 * | 741 * | 742 | 741 * | 741 * | 741 * | 62.87 |
P-n55-k7 | 568 * | 574 | 568 * | 568 * | 568 * | 568 * | 568 * | 568 * | 74.81 |
P-n55-k10 | 694 * | 702 | 694 * | 694 * | 694 * | 697 | 698 | 694 * | 73.21 |
P-n55-k15 | 989 * | - | - | 989 * | 989 * | - | 989 * | 989 * | 67.37 |
P-n60-k10 | 744 * | 757 | 744 * | 744 * | 744 * | 744 * | 749 | 744 * | 76.83 |
P-n60-k15 | 968 * | 984 | 968 * | 968 * | 968 * | 968 * | 985 | 968 * | 83.05 |
P-n65-k10 | 792 * | 792 * | 792 * | 792 * | 792 * | 792 * | 797 | 792 * | 91 |
P-n70-k10 | 827 * | 842 | 827 * | 827 * | 827 * | 827 * | 841 | 827 * | 89.86 |
P-n76-k4 | 593 * | 598 | 593 * | 593 * | 593 * | 597 | 600 | 593 * | 108.37 |
P-n76-k5 | 627 * | 632 | 627 * | 627 * | 629 | 627 * | 630 | 627 * | 110.82 |
P-n101-k4 | 681 * | 692 | 681 * | 681 * | 685 | 681 * | 696 | 681 * | 309.8 |
Instance | BK | GELS | OCGA | AGES | JCell2o1i | SAHDN | Time |
---|---|---|---|---|---|---|---|
tai75a | 1618.36 * | 1618.36 * | 1618.36 * | 1618.36 * | 1618.36 * | 1618.36 * | 160.67 |
tai75b | 1344.62 * | 1344.62 * | 1344.63 | 1344.64 | 1344.62 * | 1344.62 * | 157.99 |
tai75c | 1291.01 * | 1291.01 * | 1291.01 * | 1291.01 * | 1291.01 * | 1291.01 * | 163.29 |
tai75d | 1365.42 * | 1365.42 * | 1365.42 * | 1365.42 * | 1365.42 * | 1365.42 * | 179.73 |
tai100a | 2041.34 * | 2041.34 * | 2050.64 | 2041.34 * | 2047.90 | 2050.12 | 258.46 |
tai100b | 1939.9 * | 1947.07 | 1939.9 * | 1939.9 * | 1940.36 | 1940.5 | 264.19 |
tai100c | 1406.2 * | 1406.2 * | 1408.40 | 1406.2 * | 1411.66 | 1413.95 | 266.61 |
tai100d | 1580.46 * | 1581.25 | 1581.22 | 1581.25 | 1584.20 | 1580.46 * | 271.08 |
tai150a | 3055.23 * | 3069.14 | 3055.23 * | 3055.23 * | 3056.41 | 3072.14 | 805.39 |
tai150b | 2727.03 * | - | 2755.09 | 2727.67 | 2732.75 | 2743.38 | 811.57 |
tai150c | 2358.66 * | - | - | - | 2364.08 | 2370.26 | 1112.79 |
tai150d | 2645.39 * | 2659.02 | 2660.33 | 2645.40 | 2654.69 | 2674.85 | 1072.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arce-Ortega, D.V.; Alonso-Pecina, F.; Cruz-Chávez, M.A.; Peralta-Abarca, J.d.C. A Simulated Annealing Approach for the Homogeneous Capacitated Vehicle Routing Problem. Mathematics 2025, 13, 3209. https://doi.org/10.3390/math13193209
Arce-Ortega DV, Alonso-Pecina F, Cruz-Chávez MA, Peralta-Abarca JdC. A Simulated Annealing Approach for the Homogeneous Capacitated Vehicle Routing Problem. Mathematics. 2025; 13(19):3209. https://doi.org/10.3390/math13193209
Chicago/Turabian StyleArce-Ortega, Dalia Vanessa, Federico Alonso-Pecina, Marco Antonio Cruz-Chávez, and Jesús del Carmen Peralta-Abarca. 2025. "A Simulated Annealing Approach for the Homogeneous Capacitated Vehicle Routing Problem" Mathematics 13, no. 19: 3209. https://doi.org/10.3390/math13193209
APA StyleArce-Ortega, D. V., Alonso-Pecina, F., Cruz-Chávez, M. A., & Peralta-Abarca, J. d. C. (2025). A Simulated Annealing Approach for the Homogeneous Capacitated Vehicle Routing Problem. Mathematics, 13(19), 3209. https://doi.org/10.3390/math13193209