Efficient 3D Model Simplification Algorithms Based on OpenMP
Abstract
1. Introduction
Research Work
2. Construction of Quadric Error Metrics Algorithm and Approximate Curvature Algorithm (ACA)
2.1. Construction of Quadric Error Metrics Algorithm
2.2. Construction of Approximate Curvature Algorithm
3. Parallel Processing Algorithm Construction and Experiment
3.1. Overview of Parallel Optimization Strategy
3.1.1. Data Structure Layering Strategy
3.1.2. Concrete Algorithm Implementation
- Step 1. Loading and Preprocessing Stage: All OBJ files of the 3D part models in assembly are loaded simultaneously to construct the 3D mesh data list.
- Step 2. Thread Pool Initialization: A thread pool for parallel simplification is established, followed by the creation of OpenMP parallel tasks to manage simplification states within each thread-private cache.
- Step 3. Parallel Initialization: Triangle references and edge quadric error metrics are initialized in parallel, while new triangle data are constructed concurrently.
- Step 4. Iteration Termination Check: If the number of triangles has not yet reached the target threshold, parallel collapse operations continue.
- Step 5. Compression and Output: Perform the final mesh compression and output the simplified OBJ file.
3.2. Parallel Algorithm Experiment
3.3. Analysis of Experimental Results
4. Conclusions
- Efficient Parallel Strategy: A hierarchical, decoupled parallel simplification framework was developed, demonstrating reliable performance across diverse industrial-scale models.
- Significant Acceleration: Experimental results on three representative industrial models reveal a maximum speedup of 5.5× over traditional serial approaches, with the improvement being most pronounced for large-scale triangular mesh models.
- Algorithm-Specific Insights: The QEM algorithm shows potential for lightweight optimization due to its low computational density, while the approximate curvature variant benefits more from parallelism under high thread-count environments due to its heavier computation load.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, A.E.; Hebert, M. Control of Polygonal Mesh Resolution for 3-D Computer Vision. Graph. Models Image Process. 1998, 60, 261–285. [Google Scholar] [CrossRef]
- Wu, X.; Ye, J. A New 3-D Mesh Simplification Algorithm. Rev. Colomb. Comput. 2003, 4, 65–73. Available online: https://doaj.org/article/b28b59d0d56a49b2a18e45ad9a2e1844 (accessed on 15 February 2025).
- Anjos, R.K.; Roberts, R.; Allen, B.; Jorge, J.; Anjyo, K. Saliency Detection for Large-Scale Mesh Decimation. 2020. Available online: https://eprints.whiterose.ac.uk/195788/ (accessed on 5 July 2025).
- Kwon, S.; Mun, D.; Kim, B.C.; Han, S. Feature shape complexity: A new criterion for the simplification of feature-based 3D CAD models. Int. J. Adv. Manuf. Technol. 2017, 88, 1831–1843. [Google Scholar] [CrossRef]
- Yao, L.; Huang, S.; Xu, H.; Li, P. Quadratic Error Metric Mesh Simplification Algorithm Based on Discrete Curvature. Math. Probl. Eng. 2015, 2015, 428917. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, D.; Dong, Y.; Yang, Y.; Khalil, H.S.U.R.; Wang, X. Two-Round Optimization Algorithm Based on Quadric Error Metrics. IEEE Access 2025, 13, 30021–30035. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Guo, B.; Peng, Z. Structure-Aware Simplified Algorithm of Mesh Model for Urban Scene. Acta Geod. Cartogr. Sin. 2020, 49, 334–342. [Google Scholar]
- Chang, H.; Dong, Y.; Zhang, D.; Su, X.; Yang, Y.; Lee, I. Review of Three-Dimensional Model Simplification Algorithms Based on Quadric Error Metrics and Bibliometric Analysis by Knowledge Map. Mathematics 2023, 11, 4815. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L.; Li, J. Mesh Simplification for Medical Image Modeling. 2007. Available online: http://dspace.xmu.edu.cn/handle/2288/156695 (accessed on 2 July 2025).
- Zhang, C.; Li, Y.; Wu, S. Simplification of 3D Building Models with Texture Features. IEEE Access 2022, 8, 196341–196350. [Google Scholar] [CrossRef]
- Yu, J.; Wei, M.; Qin, J.; Wu, J.; Heng, P.-A. Feature-Preserving Mesh Denoising via Normal Guided Quadric Error Metrics. Opt. Lasers Eng. 2014, 62, 57–68. [Google Scholar] [CrossRef]
- Lavoué, G.; Wolf, C.; Girard, S. Markov Random Fields for Improving 3D Mesh Analysis and Segmentation. 2008. Available online: https://diglib.eg.org/items/9f167637-8adb-4c4c-b838-5ed61f8e3e84 (accessed on 5 July 2025).
- Tseng, J.-L. Surface Simplification of 3D Animation Models Using Robust Homogeneous Coordinate Transformation. J. Appl. Math. 2014, 2014, 189241. [Google Scholar] [CrossRef]
- Fan, L.; Wu, C.; He, F.; Fan, B.; Liang, Y. Delaunay Meshes Simplification with Multi-Objective Optimisation and Fine Tuning. IET Collab. Intell. Manuf. 2023, 5, e12088. [Google Scholar] [CrossRef]
- Pan, Z.; Zhou, K.; Shi, J. A New Mesh Simplification Algorithm Based on Triangle Collapses. J. Comput. Sci. Technol. 2001, 16, 57–63. [Google Scholar] [CrossRef]
- Wang, X. Realtime 3D Reconstruction with Mobile Devices. In International Conference on Applications and Techniques in Cyber Security and Intelligence ATCI 2018; Abawajy, J., Choo, K.K., Islam, R., Xu, Z., Atiquzzaman, M., Eds.; ATCI 2018. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2018; Volume 842. [Google Scholar] [CrossRef]
- Li, M.; Nan, L. Feature-Preserving 3D Mesh Simplification for Urban Buildings. ISPRS J. Photogramm. Remote Sens. 2021, 173, 135–150. [Google Scholar] [CrossRef]
- Zhou, S.; Mo, X.; Wang, Z.; Li, Q.; Chen, T.; Zheng, Y.; Sheng, W. An Evolutionary Algorithm with Clustering-Based Selection Strategies for Multi-Objective Optimization. Inf. Sci. Int. J. 2023, 624, 217–234. [Google Scholar] [CrossRef]
- Li, H.; Kim, S. Mesh Simplification Algorithms for Rendering Performance. Int. J. Eng. Res. Technol. 2020, 13, 1110–1119. [Google Scholar] [CrossRef]
- Mousa, M.H.; Hussein, M.K. High-performance simplification of triangular surfaces using a GPU. PLoS ONE 2021, 16, e0255832. [Google Scholar] [CrossRef]
- Li, C.; Shen, Z.; Wang, Y. GPU-based mesh reduction strategy utilizing active nodes. Softw. Impacts 2023, 18, 100482. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Sun, Q. GPolylla: Fully GPU-accelerated polygonal mesh generator using half-edge data structures. arXiv 2024, arXiv:2403.14723. Available online: https://arxiv.org/abs/2403.14723 (accessed on 2 September 2025). [CrossRef]
- Choi, D.; Park, M.; Lee, S. End-to-End GPU-Accelerated Low-Poly Remeshing using Curvature Map and Voronoi Tessellation. Comput. Graph. Forum (Eurograph.) 2025, in press. Available online: https://www.researchgate.net/publication/370736210_End-to-End_GPU-Accelerated_Low-Poly_Remeshing_using_Curvature_Map_and_Voronoi_Tessellation (accessed on 2 September 2025).
- Huang, Y.; Liu, F.; Wang, L. Parallel Topology-Aware Mesh Simplification on Terrain Trees. ACM Trans. Spat. Algorithms Syst. (TSAS) 2024, 10, 1–39. [Google Scholar] [CrossRef]
- Mahmoud, A.; Ren, H.; Krishnamurthy, A. Locality-Aware Automatic Differentiation on the GPU for Mesh-Based Computations. arXiv 2025, arXiv:2509.00406. Available online: https://arxiv.org/abs/2509.00406 (accessed on 7 September 2025).
- Gupta, R.; Xu, Y.; Zhang, J. GALE: Leveraging Heterogeneous Systems for Efficient Unstructured Mesh Data Analysis. arXiv 2025, arXiv:2507.15230. Available online: https://arxiv.org/abs/2507.15230 (accessed on 7 September 2025). [CrossRef]
3D Model Name | Transport Vehicle | Manipulator Arm | Pipeline |
---|---|---|---|
Model Size | 2.58 GB | 89.9 MB | 1.36 GB |
Number of Part Models | 217 | 28 | 105 |
Number of Faces | 7,892,504 | 296,462 | 4,194,970 |
Simplification Rate | 0.5 | 0.5 | 0.5 |
Algorithm | Model Name | Simplification Time (s) | |||||||
---|---|---|---|---|---|---|---|---|---|
No Parallel | 2 Threads | 3 Threads | 4 Threads | 5 Threads | 6 Threads | 7 Threads | 8 Threads | ||
QEM | Transport Vehicle | 169.128 | 134.229 | 124.359 | 97.762 | 71.062 | 56.598 | 52.476 | 44.981 |
Mechanical Arm | 5.999 | 5.535 | 4.896 | 3.643 | 2.862 | 2.167 | 1.986 | 1.666 | |
Pipeline | 88.397 | 79.343 | 64.085 | 51.380 | 43.587 | 32.501 | 27.484 | 23.894 | |
ACA | Transport Vehicle | 1068.636 | 1187.381 | 627.344 | 517.712 | 537.303 | 405.468 | 381.656 | 344.721 |
Mechanical Arm | 36.005 | 45.576 | 20.397 | 19.391 | 14.521 | 13.067 | 13.848 | 11.922 | |
Pipeline | 609.405 | 620.067 | 503.883 | 476.148 | 289.121 | 279.101 | 199.755 | 183.058 |
Algorithm | Model Name | Simplification Time (s) | |||||||
---|---|---|---|---|---|---|---|---|---|
No Parallel | 2 Threads | 3 Threads | 4 Threads | 5 Threads | 6 Threads | 7 Threads | 8 Threads | ||
QEM | Transport Vehicle | 361.543 | 191.652 | 152.632 | 121.365 | 96.187 | 76.739 | 72.447 | 71.383 |
Mechanical Arm | 12.813 | 6.813 | 5.576 | 4.243 | 3.234 | 3.086 | 2.728 | 2.330 | |
Pipeline | 186.216 | 99.985 | 78.266 | 59.894 | 49.042 | 41.713 | 34.630 | 34.793 | |
ACA | Transport Vehicle | 2310.260 | 1574.612 | 1550.400 | 1019.628 | 917.744 | 848.163 | 671.954 | 699.878 |
Mechanical Arm | 78.451 | 53.040 | 48.626 | 37.737 | 30.710 | 28.049 | 24.414 | 24.183 | |
Pipeline | 1101.373 | 896.796 | 752.663 | 581.087 | 459.756 | 357.839 | 363.389 | 301.920 |
Algorithm | Model Name | Simplification Time (s) | |||||||
---|---|---|---|---|---|---|---|---|---|
No Parallel | 2 Threads | 3 Threads | 4 Threads | 5 Threads | 6 Threads | 7 Threads | 8 Threads | ||
QEM | Transport Vehicle | 567.586 | 361.740 | 259.788 | 196.654 | 160.365 | 144.794 | 127.750 | 119.970 |
Mechanical Arm | 20.069 | 13.698 | 10.286 | 7.266 | 5.726 | 4.623 | 4.106 | 3.798 | |
Pipeline | 295.522 | 205.164 | 154.230 | 103.922 | 88.546 | 69.524 | 59.770 | 58.957 | |
ACA | Transport Vehicle | 3690.765 | 3513.644 | 2484.314 | 1925.705 | 1607.630 | 1389.438 | 1304.468 | 1149.177 |
Mechanical Arm | 123.160 | 101.244 | 83.557 | 62.134 | 52.418 | 45.492 | 41.433 | 37.575 | |
Pipeline | 1746.319 | 1434.758 | 1165.924 | 1079.959 | 773.248 | 601.095 | 527.391 | 487.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Wan, S.; Ni, J.; Fan, Y.; Zhang, X.; Xiong, Y. Efficient 3D Model Simplification Algorithms Based on OpenMP. Mathematics 2025, 13, 3183. https://doi.org/10.3390/math13193183
Chang H, Wan S, Ni J, Fan Y, Zhang X, Xiong Y. Efficient 3D Model Simplification Algorithms Based on OpenMP. Mathematics. 2025; 13(19):3183. https://doi.org/10.3390/math13193183
Chicago/Turabian StyleChang, Han, Sanhe Wan, Jingyu Ni, Yidan Fan, Xiangxue Zhang, and Yuxuan Xiong. 2025. "Efficient 3D Model Simplification Algorithms Based on OpenMP" Mathematics 13, no. 19: 3183. https://doi.org/10.3390/math13193183
APA StyleChang, H., Wan, S., Ni, J., Fan, Y., Zhang, X., & Xiong, Y. (2025). Efficient 3D Model Simplification Algorithms Based on OpenMP. Mathematics, 13(19), 3183. https://doi.org/10.3390/math13193183