Next Article in Journal
A Spectral Approach to Solve High-Order Ordinary Differential Equations: Improved Operational Matrices for Exponential Jacobi Functions
Previous Article in Journal
Deep Reinforcement Learning-Based DCT Image Steganography
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Implicit Phase-Fitted and Amplification-Fitted Four-Point Block Methods for Oscillatory First-Order Problems

by
Nadiyah Hussain Alharthi
1,
Anurag Kaur
2,*,
Theodore E. Simos
3,* and
Rubayyi T. Alqahtani
1
1
Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
2
Department of Mathematics, Thapar Institute of Engineering and Technology (Deemed University), Patiala 147004, Punjab, India
3
Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, West Mishref, Hawally 32093, Kuwait
*
Authors to whom correspondence should be addressed.
Mathematics 2025, 13(19), 3151; https://doi.org/10.3390/math13193151
Submission received: 31 July 2025 / Revised: 14 September 2025 / Accepted: 29 September 2025 / Published: 2 October 2025

Abstract

This study introduces a family of implicit four-point block methods for solving first-order initial value problems (IVPs) with oscillatory solutions. In addition to an eighth-order block method, amplification-fitted and phase-fitted implicit block methods are also derived. The methods are implemented in a predictor–corrector framework, where the predictor is a four-point explicit block method constructed with the corresponding properties. A comprehensive stability analysis is carried out to assess the robustness of the proposed approaches. Comparative evaluations with existing methods demonstrate the superior efficiency of the new algorithms. Numerical experiments further confirm that the proposed techniques provide significant improvements over traditional methods, particularly for oscillatory IVPs.
MSC:
65N35; 65M12; 65M70; 65L04; 34A12

1. Introduction

The ordinary differential equations (ODEs) are powerful mathematical tools that can be used to describe and analyze various real-world phenomena. Regarding processes that display periodic or cyclic behavior, examples include mechanical vibrations, electrical circuits, and biological rhythms that are often modeled using differential equations with oscillatory solutions. These formulations commonly include sinusoidal or related periodic terms, where capturing the oscillations with high accuracy is critical for reliable analysis of natural phenomena. The repetitive nature of these equations typically necessitates specialized numerical methods for their solution, making this a significant area of study [1]. Among the classical strategies for solving initial value problems (IVPs), Runge–Kutta (RK) schemes stand out as the most extensively adopted. Furthermore, several specialized classes of RK methods have been proposed on the basis of exponential fitting, trigonometrically fitted schemes, and hybrid methods [2,3,4,5,6,7,8,9,10] in the literature to enhance the accuracy of oscillatory problem solving. Implicit methods are more stable for oscillatory IVPs, allowing for larger time steps and better handling of stiffness compared to explicit methods. For a comprehensive overview of various method classes, readers can refer to the works of Butcher [11] and Hairer et al. [12]. These traditional methods compute numerical solutions sequentially, one point at a time. Instead of progressing point by point, efficiency may be enhanced through schemes that determine solutions at multiple locations concurrently through an approach identified as the block method. Several researchers have developed block methods for numerically solving first-order ordinary differential equations (ODEs), including notable contributions from Birta et al. [13], Chu and Hamilton [14], Shampine and Watt [15], and Tam et al. [16]. The following key insights from prior work underpin our study:
  • Gragg and Stetter [17] employed hybrid multistep methods to address stiff systems, while Milne [18] introduced block methods that improve computational efficiency through parallelism.
  • To enhance stability, hybrid block methods were later developed and optimized [19]. These approaches primarily focus on minimizing local truncation errors but are less effective for highly oscillatory problems.
  • In high-frequency oscillatory problems, accurately capturing the amplitude, energy, envelope, and especially phase over long time intervals is crucial yet difficult. Real-time applications often accept phase and amplification errors in exchange for larger time steps and improved efficiency.
  • Most existing numerical methods assume near-linearity, which limits their applicability. Block methods, on the other hand, are well suited for nonlinear problems and are thus more adaptable to real-world applications.
Although considerable research has been devoted to block methods, there is still a lack of approaches that efficiently control phase lag and amplification error, particularly in the context of first-order initial value problems (IVPs). In this study, we present a numerical integrator designed to solve IVPs of the form
d u d t = f ( t , u ) , u ( t 0 ) = u 0 ,
where t [ t 0 , t N ] , u ( t ) denotes the system’s rate of change, f ( t , u ) describes the system’s dynamics, and u ( t 0 ) = u 0 serves as the initial condition. Within this framework, zero-stable implicit and explicit block methods are developed, and the associated theory to evaluate phase lag and amplification error (or amplification factor) [7] is employed. In addition, we introduce systematic approaches for the construction of amplification-fitted and phase-fitted block methods.
The structure of this paper is outlined as follows:
  • Section 2 derives an implicit zero-stable four-point block method of order eight and an explicit zero-stable four-point block method of order four. The derivation employs the framework in [7] to evaluate the phase lag and amplification error (or amplification factor) associated with block methods for solving first-order IVPs.
  • Section 3 develops strategies to optimize phase lag and amplification factor, leading to the construction of phase-fitted and amplification-fitted block methods. In particular, we present procedures for minimizing phase lag, techniques for deriving amplification-fitted schemes, and an integrated approach for constructing methods that are both phase- and amplification-fitted.
  • Section 4 provides a detailed stability analysis of the proposed family of methods, examining their behavior under various conditions.
  • Section 5 reports numerical experiments illustrating the accuracy and effectiveness of the proposed approaches when applied in predictor–corrector mode.

2. 4-Points Block Methods

As stated by Fatunla [20], the difference equation in matrix form for the s-point m-step block method in solving an initial value problem (IVP) (1) is given by
U n = i = 1 m A i U n i + h i = 0 m B i F n i ,
where
U n = u n s u n s + 1 u n s + s 1 and F n = f n s f n s + 1 f n s + s 1 ,
where n = 0 , 1 , 2 , , and f n s = f ( t 0 + h ( n s ) , u n s ) .
In the classification of block schemes, the method is considered explicit if the coefficient matrix B 0 vanishes, B 0 = 0 ; otherwise, it is an implicit method. According to [21,22,23], assuming u is smooth, the local truncation error for the block method (2) results from the Taylor expansion of the linear difference operator L and is expressed as
L [ u ( t ) ; h ] = h 0 u ( t ) C 0 + h 1 u ( t ) C 1 + h 2 u ( t ) C 2 + + h p u ( p ) ( t ) C p + .
The block method achieves an order p if and only if C 0 = C 1 = C 2 = = C p = 0 and C p + 1 0 , where C p + 1 represents the error constant.
For the four-point one-step block method ( s = 4 ), the corresponding matrix finite difference equation is given by
U n + 1 = A U n + h B 1 F n + h B 2 F n + 1 ,
with the coefficient matrices specified as
A = A [ 11 ] A [ 12 ] A [ 13 ] A [ 14 ] A [ 21 ] A [ 22 ] A [ 23 ] A [ 24 ] A [ 31 ] A [ 32 ] A [ 33 ] A [ 34 ] A [ 41 ] A [ 42 ] A [ 43 ] A [ 44 ] .
The property of zero stability guarantees that numerical errors remain bounded and are not amplified as the solution evolves step by step. Consequently, for a zero-stable one-step block method, all eigenvalues of A must lie within or on the unit circle in the complex plane, and any eigenvalue with a magnitude equal to 1 must have an algebraic multiplicity of 1. Several instances meet this condition for A, and one of them is given as
A = 1 10 1 5 3 10 2 5 1 10 1 5 3 10 2 5 1 10 1 5 3 10 2 5 1 10 1 5 3 10 2 5 .

2.1. Implicit Block Method

Considering matrix A given in (4), a zero-stable four-point implicit block method
U n + 1 = A U n + h W 2 F n + h W 3 F n + 1 ,
is derived as follows: By using Taylor series, the difference equation
U n + 1 A U n h W 2 F n h W 3 F n + 1
is expanded, and enforcing zero coefficients for u ( t ) , u ( t ) , , u ( 8 ) ( t ) across the rows generates a system of 32 equations with 32 unknowns, wherein solving it using MATHEMATICA (Version number: 11.0.1.0), gives the following matrix
W 2 = 3287 120960 138469 604800 8013 22400 116213 120960 1739 60480 64937 302400 14027 33600 47993 60480 3127 120960 144869 604800 7213 22400 122869 120960 2251 60480 44057 302400 7449 11200 17161 60480 , W 3 = 55397 120960 167 4480 3061 604800 221 604800 13709 12096 2951 6720 8927 302400 767 302400 92293 120960 5721 4480 221141 604800 763 86400 107713 60480 121 448 460193 302400 12761 43200 .

2.2. Explicit Block Method

We follow the above procedure to find the coefficient matrix for the zero-stable four-point explicit block method via
U n + 1 = A U n + h W 4 F n .
The difference Equation (6), when expanded using Taylor’s expansion and with vanishing coefficients of u ( t ) , u ( t ) , , u i v ( t ) , yields 16 equations in 16 unknowns. These equations can then be solved using MATHEMATICA, yielding the following matrix:
W 4 = 13 40 199 120 221 120 301 120 157 60 209 20 281 20 553 60 373 40 4199 120 5461 120 2861 120 479 20 5207 60 6523 60 3053 60 .
The implicit block method (5) has the following local truncation error:
L T E = 649 u ( 9 ) ( t ) h 9 3628800 + O h 10 647 u ( 9 ) ( t ) h 9 604800 + O h 10 683 u ( 9 ) ( t ) h 9 725760 + O h 10 15269 u ( 9 ) ( t ) h 9 1814400 + O h 10 ,
and for the explicit block method (6), we have
L T E = 241 720 u ( 5 ) ( t ) h 5 + O h 6 119 40 u ( 5 ) ( t ) h 5 + O h 6 8873 720 u ( 5 ) ( t ) h 5 + O h 6 13067 360 u ( 5 ) ( t ) h 5 + O h 6 .
The implicit method is of order eight, while the explicit method has an accuracy of order four. To analyze the phase lag and amplification factor of the four-point one-step block method (3), consider the following test equation:
u ( t ) = i ω u ( t ) ,
which has an analytical solution given as
u ( t ) = exp ( i ω t ) ,
Using the theory presented in [7], we assess it for the block methods (3). After applying the block method to the IVP (7), the following result is obtained:
u n + 4 u n + 5 u n + 6 u n + 7 = A u n u n + 1 u n + 2 u n + 3 + h ( i ω ) B 1 u n u n + 1 u n + 2 u n + 3 + h ( i ω ) B 2 u n + 4 u n + 5 u n + 6 u n + 7 .
Further, considering η = ω h , the system of difference Equation (9) possesses the following characteristic equation:
ζ 4 ζ 5 ζ 6 ζ 7 A 1 ζ 1 ζ 2 ζ 3 i η B 1 1 ζ 1 ζ 2 ζ 3 i η B 2 ζ 4 ζ 5 ζ 6 ζ 7 .
Holding ζ n = exp n i ψ ( η ) = cos ( n ψ ( η ) ) + i sin ( n ψ ( η ) ) , n N , the above equation arrives at
( I i η B 2 ) cos ( 4 ψ ( η ) ) + i sin ( 4 ψ ( η ) ) cos ( 5 ψ ( η ) ) + i sin ( 5 ψ ( η ) ) cos ( 6 ψ ( η ) ) + i sin ( 6 ψ ( η ) ) cos ( 7 ψ ( η ) ) + i sin ( 7 ψ ( η ) ) = ( A + i η B 1 ) 1 cos ( ψ ( η ) ) + i sin ( ψ ( η ) ) cos ( 2 ψ ( η ) ) + i sin ( 2 ψ ( η ) ) cos ( 3 ψ ( η ) ) + i sin ( 3 ψ ( η ) ) .
Definition 1 
(Order of Phase Lag). Let the theoretical solution of the scalar test Equation (7) at t = h be expressed as exp ( i ω h ) , or equivalently, exp ( i η ) . The corresponding numerical solution at t = h , obtained from the scalar test Equation (7), is given by exp ( i ψ ( η ) ) . The phase lag is then defined by the following expression:
Φ = η ψ ( η ) .
If the phase lag Φ asymptotically behaves as O ( η q + 1 ) as η 0 , the phase lag is said to have an order of q.
Lemma 1. 
The relations provided below hold as
cos ( j ψ ( η ) ) = cos ( j η ) + c j 2 η q + 2 + O ( η q + 4 ) , sin ( j ψ ( η ) ) = sin ( j η ) c j η q + 1 + O ( η q + 3 ) .
Proof. 
See Ref. [7] for the detailed proof.  □
Theorem 1. 
(Amplification Factor): The amplification factor A F for a four-point one-step block method (3) is given by
A F = η q + 1 C = K 1 . sin ( 4 η ) sin ( 5 η ) sin ( 6 η ) sin ( 7 η ) A . 0 sin ( η ) sin ( 2 η ) sin ( 3 η ) η B 1 . 1 cos ( η ) cos ( 2 η ) cos ( 3 η ) η B 2 . cos ( 4 η ) cos ( 5 η ) cos ( 6 η ) cos ( 7 η ) ,
where q is the order of the amplification factor, which is defined as
K = 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 + A 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 η 2 B 1 0 0 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 3 2 η 2 B 2 4 2 0 0 0 0 5 2 0 0 0 0 6 2 0 0 0 0 7 2
and η = ω h .
Proof. 
By applying the relation (13) derived from Lemma 1 directly into the characteristic Equation (11), we obtain the following result:
( I i η B 2 ) cos ( 4 η ) + c 1 ( 4 ) 2 η q + 2 + i ( sin ( 4 η ) c 1 ( 4 ) η q + 1 ) cos ( 5 η ) + c 2 ( 5 ) 2 η q + 2 + i ( sin ( 5 η ) c 2 ( 5 ) η q + 1 ) cos ( 6 η ) + c 3 ( 6 ) 2 η q + 2 + i ( sin ( 6 η ) c 3 ( 6 ) η q + 1 ) cos ( 7 η ) + c 4 ( 7 ) 2 η q + 2 + i ( sin ( 7 η ) c 4 ( 7 ) η q + 1 ) = ( A + i η B 1 ) 1 cos ( η ) + c 2 ( 1 ) 2 η q + 2 + i ( sin ( η ) c 2 ( 1 ) η q + 1 ) cos ( 2 η ) + c 3 ( 2 ) 2 η q + 2 + i ( sin ( 2 η ) c 3 ( 2 ) η q + 1 ) cos ( 3 η ) + c 4 ( 3 ) 2 η q + 2 + i ( sin ( 3 η ) c 4 ( 3 ) η q + 1 ) ,
The imaginary component of the system presented above is expressed as
sin ( 4 η ) c 1 ( 4 ) η q + 1 sin ( 5 η ) c 2 ( 5 ) η q + 1 sin ( 6 η ) c 3 ( 6 ) η q + 1 sin ( 7 η ) c 4 ( 7 ) η q + 1 η B 2 cos ( 4 η ) + c 1 ( 4 ) 2 η q + 2 cos ( 5 η ) + c 2 ( 5 ) 2 η q + 2 cos ( 6 η ) + c 3 ( 6 ) 2 η q + 2 cos ( 7 η ) + c 4 ( 7 ) 2 η q + 2 = A 0 sin ( η ) c 2 ( 1 ) η q + 1 sin ( 2 η ) c 3 ( 2 ) η q + 1 sin ( 3 η ) c 4 ( 3 ) η q + 1 + η B 1 1 cos ( η ) + c 2 ( 1 ) 2 η q + 2 cos ( 2 η ) + c 3 ( 2 ) 2 η q + 2 cos ( 3 η ) + c 4 ( 3 ) 2 η q + 2 ,
which can be further simplified as
η q + 1 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 A 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 C η q + 1 η 2 B 1 0 0 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 3 2 + η 2 B 2 4 2 0 0 0 0 5 2 0 0 0 0 6 2 0 0 0 0 7 2 C = sin ( 4 η ) sin ( 5 η ) sin ( 6 η ) sin ( 7 η ) + A 0 sin ( η ) sin ( 2 η ) sin ( 3 η ) + η B 1 1 cos ( η ) cos ( 2 η ) cos ( 3 η ) + η B 2 cos ( 4 η ) cos ( 5 η ) cos ( 6 η ) cos ( 7 η ) ,
where C = [ c 1 , c 2 , c 3 , c 4 ] T . The explicit formula for calculating the amplification factor ( A F ) of the block method (3) is
η q + 1 C = K 1 . sin ( 4 η ) sin ( 5 η ) sin ( 6 η ) sin ( 7 η ) A . 0 sin ( η ) sin ( 2 η ) sin ( 3 η ) η B 1 . 1 cos ( η ) cos ( 2 η ) cos ( 3 η ) η B 2 . cos ( 4 η ) cos ( 5 η ) cos ( 6 η ) cos ( 7 η ) ,
where K = 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 + A 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3
η 2 B 1 0 0 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 3 2 η 2 B 2 4 2 0 0 0 0 5 2 0 0 0 0 6 2 0 0 0 0 7 2 .
Theorem 2. 
(Phase Lag): The phase lag P h E r for a four-point one-step block method (3) is calculated as
P h E r = η q + 2 C = L 1 . cos ( 4 η ) cos ( 5 η ) cos ( 6 η ) cos ( 7 η ) A . 1 cos ( η ) cos ( 2 η ) cos ( 3 η ) + η B 1 . 0 sin ( η ) sin ( 2 η ) sin ( 3 η ) + η B 2 . sin ( 4 η ) sin ( 5 η ) sin ( 6 η ) sin ( 7 η ) ,
where q is the order of phase lag
L = 4 2 0 0 0 0 5 2 0 0 0 0 6 2 0 0 0 0 7 2 A 0 0 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 3 2 B 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 B 2 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7
and η = ω h .
Proof. 
In a manner analogous to the proof of Theorem 1, we apply Lemma 1 and substitute the resulting relation (13) into the characteristic Equation (10), thereby deriving (15). Similarly, by examining the real part of (15), one obtains
cos ( 4 η ) + c 1 ( 4 ) 2 η q + 2 cos ( 5 η ) + c 2 ( 5 ) 2 η q + 2 cos ( 6 η ) + c 3 ( 6 ) 2 η q + 2 cos ( 7 η ) + c 4 ( 7 ) 2 η q + 2 = A 1 cos ( η ) + c 2 ( 1 ) 2 η q + 2 cos ( 2 η ) + c 3 ( 2 ) 2 η q + 2 cos ( 3 η ) + c 4 ( 3 ) 2 η q + 2 η B 1 0 sin ( η ) c 2 ( 1 ) η q + 1 sin ( 2 η ) c 3 ( 2 ) η q + 1 sin ( 3 η ) c 4 ( 3 ) η q + 1 η B 2 sin ( 4 η ) c 1 ( 4 ) η q + 1 sin ( 5 η ) c 2 ( 5 ) η q + 1 sin ( 6 η ) c 3 ( 6 ) η q + 1 sin ( 7 η ) c 4 ( 7 ) η q + 1 .
η q + 2 4 2 0 0 0 0 5 2 0 0 0 0 6 2 0 0 0 0 7 2 A 0 0 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 3 2 B 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 B 2 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 C = cos ( 4 η ) cos ( 5 η ) cos ( 6 η ) cos ( 7 η ) A 1 cos ( η ) cos ( 2 η ) cos ( 3 η ) + η B 1 0 sin ( η ) sin ( 2 η ) sin ( 3 η ) + η B 2 sin ( 4 η ) sin ( 5 η ) sin ( 6 η ) sin ( 7 η ) ,
η q + 2 C = L 1 cos ( 4 η ) cos ( 5 η ) cos ( 6 η ) cos ( 7 η ) A 1 cos ( η ) cos ( 2 η ) cos ( 3 η ) + η B 1 0 sin ( η ) sin ( 2 η ) sin ( 3 η ) + η B 2 sin ( 4 η ) sin ( 5 η ) sin ( 6 η ) sin ( 7 η ) ,
where L = 4 2 0 0 0 0 5 2 0 0 0 0 6 2 0 0 0 0 7 2 A 0 0 0 0 0 1 2 0 0 0 0 2 2 0 0 0 0 3 2 B 1 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 B 2 4 0 0 0 0 5 0 0 0 0 6 0 0 0 0 7 .
To calculate the order of the amplification factor of the implicit block method (5), Formula (14) from Theorem 1 for the implicit method (5) is expanded with B 1 = W 2 and B 2 = W 3 , using the Taylor series expansion, as follows:
A F = 649 η 9 7257600 + O η 10 647 η 9 1814400 + O η 10 683 η 9 2903040 + O η 10 15269 η 9 9072000 + O η 10 .
Thus, q = 8 , indicating that the implicit block method (5) has an eighth-order amplification factor. Similarly, the phase error for (5) is obtained by applying Taylor’s expansion to the direct Formula (18) from Theorem 2, with B 1 = W 2 and B 2 = W 3 , resulting in
P h E r = 2767 η 10 39916800 + O η 11 13067 η 10 36288000 + O η 11 4039 η 10 16070400 + O η 11 116363 η 10 79833600 + O η 11 .
Thus, q = 8 , and the block method (5), referred to as I m 1 , exhibits an eighth-order phase lag.
Similarly, for the explicit block method (6), using the Formula (14) with B 1 = W 4 and setting B 2 as the zero matrix, the amplification factor is of fourth order and is given by
A F = 241 η 5 1440 + O η 7 119 η 5 120 + O η 7 8873 η 5 2880 + O η 7 13067 η 5 1800 + O η 7 ,
and the phase lag error evaluated as
P h E r = 943 η 6 7920 + O η 8 4511 η 6 7200 + O η 8 40223 η 6 22320 + O η 8 5773 η 6 1440 + O η 8 .
So, the explicit block method (6), denoted as E 1 , has a phase lag of order four.

2.3. Method 2: Amplification-Fitted Block Method with Minimal Phase Lag

The modified four-point one-step block method is derived by preserving the property of zero stability to ensure the accuracy and stability of the numerical solution. To derive the amplification-fitted block method with minimal phase lag, we begin by considering the matrix A from (4) in conjunction with the direct formula provided in (14). The method follows the steps outlined in the algorithm below.
Algorithm:
  • Eliminate the amplification factor: Eliminate the amplification factor and solve the set of equations for unknown coefficients and using the coefficients obtained, calculate the phase lag.
  • Perform Taylor series expansion: Expand the calculated phase lag using a Taylor series to obtain a set of relations of unknown coefficients.
  • Minimize the phase lag: Solve the system of equations required to adjust the parameters such that the phase lag is minimized. Similarly, minimize the local truncation error, making use of the updated coefficients derived.

2.3.1. Implicit Amplification-Fitted Method

By following the algorithm, eliminating the amplification factor A F from the block method (3), where the matrix A is defined as in (4), and B l [ i j ] denotes the element of B l at the ith row and jth column, results in a set of equations that are used to adjust the method for minimal phase lag:
B 2 [ 14 ] = sec ( 7 η ) 10 η ( 10 B 1 [ 11 ] η + 10 B 1 [ 12 ] η cos ( η ) + 10 B 1 [ 13 ] η cos ( 2 η ) + 10 B 1 [ 14 ] η cos ( 3 η ) + 10 B 2 [ 11 ] η cos ( 4 η ) + 10 B 2 [ 12 ] η cos ( 5 η ) + 10 B 2 [ 13 ] η cos ( 6 η ) + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) ) , B 2 [ 24 ] = sec ( 7 η ) 10 η ( 10 B 1 [ 21 ] η + 10 B 1 [ 22 ] η cos ( η ) + 10 B 1 [ 23 ] η cos ( 2 η ) + 10 B 1 [ 24 ] η cos ( 3 η ) + 10 B 2 [ 21 ] η cos ( 4 η ) + 10 B 2 [ 22 ] η cos ( 5 η ) + 10 B 2 [ 23 ] η cos ( 6 η ) + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) ) , B 2 [ 34 ] = sec ( 7 η ) 10 η ( 10 B 1 [ 32 ] η cos ( η ) + 10 B 1 [ 33 ] η cos ( 2 η ) + 10 B 1 [ 34 ] η cos ( 3 η ) + 10 B 1 [ 31 ] η + 10 B 2 [ 32 ] η cos ( 5 η ) + 10 B 2 [ 33 ] η cos ( 6 η ) + 10 B 2 [ 31 ] η cos ( 4 η ) + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 6 η ) ) ,
B 2 [ 44 ] = sec ( 7 η ) 10 η ( 10 B 1 [ 41 ] η + 10 B 1 [ 42 ] η cos ( η ) + 10 B 1 [ 43 ] η cos ( 2 η ) + 10 B 1 [ 44 ] η cos ( 3 η ) + 10 B 2 [ 41 ] η cos ( 4 η ) + 10 B 2 [ 42 ] η cos ( 5 η ) + 10 B 2 [ 43 ] η cos ( 6 η ) + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 7 η ) ) .
Furthermore, the phase lag is assessed using the coefficient values mentioned above and then minimized by eliminating the coefficients of η 2 , η 4 , η 6 , η 8 , η 10 , and η 12 . The obtained values are subsequently substituted to compute the local truncation error, aiming to eliminate the coefficient of h 3 , which gives the following matrix:
B 2 = 391775819 1016064000 163100597 9144576000 55351181 3048192000 B 2 [ 14 ] 492367847 508032000 2567326361 4572288000 122195153 1524096000 B 2 [ 24 ] 112504477 145152000 237257413 186624000 159746357 435456000 B 2 [ 34 ] 557146087 508032000 3499920601 4572288000 2014586927 1524096000 B 2 [ 44 ] ,
where
B 2 [ 14 ] = 55351181 cos ( 6 η ) sec ( 7 η ) 3048192000 163100597 cos ( 5 η ) sec ( 7 η ) 9144576000 2639859331 cos ( η ) sec ( 7 η ) 11176704000 6650747869 cos ( 2 η ) sec ( 7 η ) 20118067200 25595901389 cos ( 3 η ) sec ( 7 η ) 25147584000 2649041539 sec ( 7 η ) 100590336000 391775819 η cos ( 4 η ) 101606400 + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) sec ( 7 η ) 10 η , B 2 [ 24 ] = 122195153 cos ( 6 η ) sec ( 7 η ) 1524096000 118177373 cos ( η ) sec ( 7 η ) 508032000 492367847 cos ( 4 η ) sec ( 7 η ) 508032000 322380227 cos ( 2 η ) sec ( 7 η ) 914457600 1058770387 cos ( 3 η ) sec ( 7 η ) 1143072000 2567326361 cos ( 5 η ) sec ( 7 η ) 4572288000 121679837 sec ( 7 η ) 4572288000 ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) ) sec ( 7 η ) 10 η , B 2 [ 34 ] = 112504477 cos ( 4 η ) sec ( 7 η ) 145152000 237257413 cos ( 5 η ) sec ( 7 η ) 186624000 135919469 cos ( 2 η ) sec ( 7 η ) 410572800 159746357 cos ( 6 η ) sec ( 7 η ) 435456000 377435813 cos ( η ) sec ( 7 η ) 1596672000 3599298187 cos ( 3 η ) sec ( 7 η ) 3592512000 378040997 sec ( 7 η ) 14370048000 ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 6 η ) ) sec ( 7 η ) 10 η , B 2 [ 44 ] = 557146087 cos ( 4 η ) sec ( 7 η ) 508032000 2014586927 cos ( 6 η ) sec ( 7 η ) 1524096000 755642029 cos ( 2 η ) sec ( 7 η ) 2011806720 3499920601 cos ( 5 η ) sec ( 7 η ) 4572288000 1275777983 cos ( η ) sec ( 7 η ) 5588352000 1356755327 sec ( 7 η ) 50295168000 10752538897 η cos ( 3 η ) 1257379200 + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 7 η ) sec ( 7 η ) 10 η .
and
B 1 = 2649041539 100590336000 2639859331 11176704000 6650747869 20118067200 25595901389 25147584000 121679837 4572288000 118177373 508032000 322380227 914457600 1058770387 1143072000 378040997 14370048000 377435813 1596672000 135919469 410572800 3599298187 3592512000 1356755327 50295168000 1275777983 5588352000 755642029 2011806720 10752538897 12573792000
The modified implicit block method is denoted as I m 2 and produces the following local truncation error:
L T E = 9380033 u 5 ( t ) w 4 u ( t ) h 5 14370048000 + O h 6 854239 u 5 ( t ) w 4 u ( t ) h 5 653184000 + O h 6 1735873 u 5 ( t ) w 4 u ( t ) h 5 14370048000 + O h 6 4609987 u 5 ( t ) w 4 u ( t ) h 5 1026432000 + O h 6 ,
and has the following phase error
P h E r = 116966591 η 14 587119104000 + O η 15 495782381 η 14 3736212480000 + O η 15 5472819343 η 14 81075810816000 + O η 15 341385511 η 14 4425974784000 + O η 15 .

2.3.2. Explicit Amplification Fitted Method

Applying the algorithm to eliminate the amplification factor A F to derive the explicit block method, where the matrix A is defined as in (4) and B 2 = 0 , generates following set of equations:
B 1 [ 14 ] = B 1 [ 11 ] sec ( 3 η ) B 1 [ 12 ] cos ( η ) sec ( 3 η ) B 1 [ 13 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) ) sec ( 3 η ) 10 η , B 1 [ 24 ] = B 1 [ 21 ] sec ( 3 η ) B 1 [ 22 ] cos ( η ) sec ( 3 η ) B 1 [ 23 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) ) sec ( 3 η ) 10 η , B 1 [ 34 ] = B 1 [ 32 ] cos ( η ) sec ( 3 η ) B 1 [ 33 ] cos ( 2 η ) sec ( 3 η ) B 1 [ 31 ] sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 6 η ) ) sec ( 3 η ) 10 η , B 1 [ 44 ] = B 1 [ 41 ] sec ( 3 η ) B 1 [ 42 ] cos ( η ) sec ( 3 η ) B 1 [ 43 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 7 η ) ) sec ( 3 η ) 10 η ,
Subsequently, the coefficients of η 2 , η 4 , and η 6 equate to zero in order to minimize phase error, wherein the following coefficient matrix is obtained:
B 1 = 7 288 47 180 137 1440 B 1 [ 14 ] 31 720 17 90 541 720 B 1 [ 24 ] 413 1440 209 180 457 1440 B 1 [ 34 ] 469 144 361 90 3781 720 B 1 [ 44 ] ,
where
B 1 [ 14 ] = 1 288 ( 7 ) sec ( 3 η ) 47 180 cos ( η ) sec ( 3 η ) + 137 cos ( 2 η ) sec ( 3 η ) 1440 ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) ) sec ( 3 η ) 10 η , B 1 [ 24 ] = 1 720 ( 31 ) sec ( 3 η ) + 17 90 cos ( η ) sec ( 3 η ) + 541 720 cos ( 2 η ) sec ( 3 η ) , ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) ) sec ( 3 η ) 10 η B 1 [ 34 ] = 209 180 cos ( η ) sec ( 3 η ) + 457 cos ( 2 η ) sec ( 3 η ) 1440 + 413 sec ( 3 η ) 1440 , ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 6 η ) ) sec ( 3 η ) 10 η B 1 [ 44 ] = 469 144 sec ( 3 η ) 361 90 cos ( η ) sec ( 3 η ) + 3781 720 cos ( 2 η ) sec ( 3 η ) , ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 7 η ) ) sec ( 3 η ) 10 η .
This modified explicit method is denoted as E 2 . The method E 2 has the following properties:
L T E = 503 u ( t ) w 2 + u 3 ( t ) h 3 1440 + O h 4 383 144 u ( t ) w 2 + u 3 ( t ) h 3 + O h 4 2603 288 u ( t ) w 2 + u 3 ( t ) h 3 + O h 4 14899 720 u ( t ) w 2 + u 3 ( t ) h 3 + O h 4 ,
P h E r = 221 η 8 3326400 + O η 10 767 η 8 3024000 + O η 10 763 η 8 1339200 + O η 10 12761 η 8 950400 + O η 10 .

2.4. Method 3: Amplification-Fitted and Phase-Fitted Block Method

The method is derived through the following steps:
  • Eliminate A F and P h E r , which results in eight equations.
  • Compute the local truncation error.
  • Determine the remaining unknown coefficients by enhancing the precision of the local truncation error.

2.4.1. Implicit Phase-Fitted and Amplification-Fitted Block Method

Ensuring zero stability by considering A given in (4), the amplification factor A F is evaluated using Formula (14), which is (A1) given in Appendix A. By eliminating the amplification error, the phase error P h E r for the amplification-fitted block method is calculated from Formula (18), as given (A2) in Appendix A.
Eliminating A F leads to (22), while setting P h E r to zero results in the following:
B 1 = B 1 [ 11 ] 138469 604800 8013 22400 116213 120960 B 1 [ 21 ] 64937 302400 14027 33600 47993 60480 B 1 [ 31 ] 144869 604800 7213 22400 122869 120960 B 1 [ 41 ] 44057 302400 7449 11200 17161 60480 ,
B 2 = 55397 120960 167 4480 3061 604800 B 2 [ 14 ] 13709 12096 2951 6720 8927 302400 B 2 [ 24 ] 92293 120960 5721 4480 221141 604800 B 2 [ 34 ] 107713 60480 121 448 460193 302400 B 2 [ 44 ] ,
and Appendix A provides the other elements of the matrices.
The local truncation error of the block method I m 3 is
L T E = 649 w 8 u ( t ) u ( 9 ) ( t ) h 9 3628800 + O h 10 647 w 8 u ( t ) u ( 9 ) ( t ) h 9 604800 + O h 10 683 w 8 u ( t ) u ( 9 ) ( t ) h 9 725760 + O h 10 15269 w 8 u ( t ) u ( 9 ) ( t ) h 9 1814400 + O h 10 .
Therefore, Method I m 3 is of eighth order, with A F = 0 and P h E r = 0 .

2.4.2. Explicit Phase-Fitted and Amplification-Fitted Block Method

To find coefficient matrix for amplification fitted and phase fitted explicit block method, B 2 is considered as the zero matrix, and after eliminating the amplification error, it results in the set of Equation (24). The phase error P h E r is then evaluated and given (A3) in Appendix A.
With elimination of the phase error, the following set of equations are obtained:
B 1 [ 13 ] = B 1 [ 11 ] tan ( 3 η ) cos ( 2 η ) tan ( 3 η ) sin ( 2 η ) B 1 [ 12 ] ( cos ( η ) tan ( 3 η ) sin ( η ) ) cos ( 2 η ) tan ( 3 η ) sin ( 2 η ) 1 10 η ( sin ( 2 η ) cos ( 2 η ) tan ( 3 η ) ) [ 2 cos ( η ) 3 cos ( 2 η ) 4 cos ( 3 η ) + 10 cos ( 4 η ) 2 sin ( η ) tan ( 3 η ) 3 sin ( 2 η ) tan ( 3 η ) 4 sin ( 3 η ) tan ( 3 η ) + 10 sin ( 4 η ) tan ( 3 η ) 1 ] , B 1 [ 21 ] = B 1 [ 22 ] cot ( 3 η ) ( cos ( η ) tan ( 3 η ) sin ( η ) ) B 1 [ 23 ] cot ( 3 η ) ( cos ( 2 η ) tan ( 3 η ) sin ( 2 η ) ) 1 10 η [ cot ( 3 η ) ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 5 η ) + 2 sin ( η ) tan ( 3 η ) + 3 sin ( 2 η ) tan ( 3 η ) + 4 sin ( 3 η ) tan ( 3 η ) 10 sin ( 5 η ) tan ( 3 η ) + 1 ) ] , B 1 [ 31 ] = B 1 [ 32 ] cot ( 3 η ) ( cos ( η ) tan ( 3 η ) sin ( η ) ) B 1 [ 33 ] cot ( 3 η ) ( cos ( 2 η ) tan ( 3 η ) sin ( 2 η ) ) 1 10 η [ cot ( 3 η ) ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 6 η ) + 2 sin ( η ) tan ( 3 η ) + 3 sin ( 2 η ) tan ( 3 η ) + 4 sin ( 3 η ) tan ( 3 η ) 10 sin ( 6 η ) tan ( 3 η ) + 1 ) ] , B 1 [ 41 ] = B 1 [ 42 ] cot ( 3 η ) ( cos ( η ) tan ( 3 η ) sin ( η ) ) B 1 [ 43 ] cot ( 3 η ) ( cos ( 2 η ) tan ( 3 η ) sin ( 2 η ) ) 1 10 η [ cot ( 3 η ) ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 7 η ) + 2 sin ( η ) tan ( 3 η ) + 3 sin ( 2 η ) tan ( 3 η ) + 4 sin ( 3 η ) tan ( 3 η ) 10 sin ( 7 η ) tan ( 3 η ) + 1 ) ] ,
and optimizing the local truncation error, other unknown elements of the coefficient matrix are obtained, and they are given in Appendix A. The method is labeled as E 3 and holds the following properties:
L T E = 241 720 w 4 u ( t ) u ( 5 ) ( t ) h 5 + O h 6 119 40 w 4 u ( t ) u ( 5 ) ( t ) h 5 + O h 6 8873 720 w 4 u ( t ) u ( 5 ) ( t ) h 5 + O h 6 13067 360 w 4 u ( t ) u ( 5 ) ( t ) h 5 + O h 6 ,
P h E r = 0 ,
A F = 0 .

2.5. Method 4: Amplification-Fitted and Phase-Fitted Block Method with Vanished First Derivative of Phase Error

For this method, the first derivative of phase error is also taken into account. Even if a method has zero phase lag at a specific frequency or step size, a non-zero first derivative implies that small deviations can cause the phase error to grow rapidly. By ensuring that the first derivative of the phase error vanishes, we enhance the robustness and accuracy of the method across a broader frequency range, not just at a single point. This is particularly beneficial in long-term integration of oscillatory problems, where the frequency may vary slightly over time or be imperfectly known. The procedure is executed through the following steps:
  • Evaluate the amplification factor (AF) and the phase error (PhEr).
  • Compute the first derivative of the phase error.
  • Repeat analogous steps to construct the block method, ensuring that the amplification factor, phase error, and its derivative are all nullified.
  • Determine the remaining undetermined coefficients by optimizing the local truncation error (LTE).

2.5.1. Implicit Amplification- and Phase-Fitted Block Method with Vanished First Derivative of Phase Error

Starting with the first step outlined in the algorithm above, the system of equations given in (A1) is obtained. Eliminating the amplification factor (AF) from this system yields Equation (22). Using the resulting coefficient values, the phase error (PhEr) is then evaluated, leading to Equation (A2). Differentiating this expression with respect to η and proceeding with the subsequent steps—namely, the elimination of the phase error and its derivative while also taking the local truncation error (LTE) into account—results in the following coefficient matrices:
B 1 = B 1 [ 11 ] 138469 604800 8013 22400 116213 120960 B 1 [ 21 ] 64937 302400 14027 33600 47993 60480 B 1 [ 31 ] 144869 604800 7213 22400 122869 120960 B 1 [ 41 ] 44057 302400 7449 11200 17161 60480 ,
B 2 = 55397 120960 167 4480 B 2 [ 13 ] B 2 [ 14 ] 13709 12096 2951 6720 B 2 [ 23 ] B 2 [ 24 ] 92293 120960 5721 4480 B 2 [ 33 ] B 2 [ 34 ] 107713 60480 121 448 B 2 [ 43 ] B 2 [ 44 ] .
Appendix A lists the values of the matrix elements, and the method labeled as I m 4 local truncation error of the method I m 4 is
L T E = 8165 u ( t ) w 8 16602 u ( 3 ) ( t ) w 6 8437 u ( 9 ) ( t ) h 9 47174400 + O h 10 17723 u ( t ) w 8 26134 u ( 3 ) ( t ) w 6 8411 u ( 9 ) ( t ) h 9 7862400 + O h 10 125243 u ( t ) w 8 + 169638 u ( 3 ) ( t ) w 6 + 44395 u ( 9 ) ( t ) h 9 47174400 + O h 10 38437 u ( t ) w 8 53706 u ( 3 ) ( t ) w 6 15269 u ( 9 ) ( t ) h 9 1814400 + O h 10 ,
A F = 0 ,
P h E r = 0 .

2.5.2. Explicit Amplification- and Phase-Fitted Block Method with Vanished First Derivative of Phase Error

When B 2 is a zero matrix and the above algorithm is applied, the first step leads to Equations (24) and (27). Consequently, the following coefficient matrix is obtained:
B 1 = 13 40 B 1 [ 12 ] B 1 [ 13 ] B 1 [ 14 ] B 1 [ 21 ] 209 20 B 1 [ 23 ] B 1 [ 24 ] B 1 [ 31 ] 4199 120 B 1 [ 33 ] B 1 [ 34 ] B 1 [ 41 ] 5207 60 B 1 [ 43 ] B 1 [ 44 ] .
The values of the matrix elements are provided in Appendix A, and the method denoted as E 4 local truncation error of the method E 4 is
L T E = 461 u ( t ) w 4 + 943 u ( 3 ) ( t ) w 2 + 482 u ( 5 ) ( t ) h 5 1440 + O h 6 2726 u ( t ) w 4 + 4511 u ( 3 ) ( t ) w 2 + 1785 u ( 5 ) ( t ) h 5 600 + O h 6 19 4016 u ( t ) w 4 + 6351 u ( 3 ) ( t ) w 2 + 2335 u ( 5 ) ( t ) h 5 3600 + O h 6 125174 u ( t ) w 4 + 190509 u ( 3 ) ( t ) w 2 + 65335 u ( 5 ) ( t ) h 5 1800 + O h 6 ,
A F = 0 ,
P h E r = 0 .

2.6. Method 5: Amplification-Fitted and Phase-Fitted Block Method with Vanished First Derivative of Amplification Factor

The procedure is carried out through the following steps:
  • The amplification factor (AF) and phase error (PhEr) are first evaluated.
  • Next, the first derivative of the amplification factor is computed.
  • Formulate the block method, ensuring the elimination of the phase error, amplification factor, and its first-order derivative.
  • Finally, the remaining undetermined coefficients are obtained by minimizing the local truncation error (LTE).

2.6.1. Implicit Amplification- and Phase-Fitted Block Method with Vanished First Derivative of Amplification Error

As a result of this algorithmic procedure, the coefficient matrices B 1 & B 2 are obtained. The detailed closed-form expression for elements of the matrices can be found in Appendix A. The method is referred as I m 5 .
B 1 = B 1 [ 11 ] 138469 604800 B 1 [ 13 ] 116213 120960 B 1 [ 21 ] 64937 302400 14027 33600 B 1 [ 24 ] B 1 [ 31 ] 144869 604800 7213 22400 B 1 [ 34 ] B 1 [ 41 ] 44057 302400 7449 11200 B 1 [ 44 ] ,
B 2 = 55397 120960 167 4480 3061 604800 B 2 [ 14 ] 13709 12096 2951 6720 8927 302400 B 2 [ 24 ] 92293 120960 5721 4480 221141 604800 B 2 [ 34 ] 107713 60480 121 448 460193 302400 B 2 [ 44 ] .

2.6.2. Explicit Amplification- and Phase-Fitted Block Method with Vanished First Derivative of Amplification Error

Considering B 2 = O , the zero matrix, the algorithmic procedure yields the coefficient matrix B 1 . The end analytical formulations of this matrix are provided in Appendix A. The method is denoted as E 5 .
B 1 = B 1 [ 11 ] 199 120 B 1 [ 13 ] B 1 [ 14 ] B 1 [ 21 ] 209 20 B 1 [ 23 ] B 1 [ 24 ] B 1 [ 31 ] 4199 120 B 1 [ 33 ] B 1 [ 34 ] B 1 [ 41 ] 5207 60 B 1 [ 43 ] B 1 [ 44 ] ,
The local truncation error of the method I m 5 is
L T E = 649 3 u ( t ) w 8 + 4 u ( 3 ) ( t ) w 6 + u ( 9 ) ( t ) h 9 3628800 + O h 10 647 3 u ( t ) w 8 + 4 u ( 3 ) ( t ) w 6 + u ( 9 ) ( t ) h 9 604800 + O h 10 683 3 u ( t ) w 8 + 4 u ( 3 ) ( t ) w 6 + u ( 9 ) ( t ) h 9 725760 + O h 10 15269 3 u ( t ) w 8 + 4 u ( 3 ) ( t ) w 6 + u ( 9 ) ( t ) h 9 1814400 + O h 10 ,
The local truncation error of the method E 5 is
L T E = 241 720 u ( t ) w 4 + 2 u ( 3 ) ( t ) w 2 + u ( 5 ) ( t ) h 5 + O h 6 119 40 u ( t ) w 4 + 2 u ( 3 ) ( t ) w 2 + u ( 5 ) ( t ) h 5 + O h 6 8873 720 u ( t ) w 4 + 2 u ( 3 ) ( t ) w 2 + u ( 5 ) ( t ) h 5 + O h 6 13067 360 u ( t ) w 4 + 2 u ( 3 ) ( t ) w 2 + u ( 5 ) ( t ) h 5 + O h 6 ,
A F = 0 ,
P h E r = 0 .
Table 1 comprehensively encapsulates the essential properties of the developed methods, highlighting their strengths and distinguishing features.

3. Stability

The stability analysis helps us to understand how the method behaves under different step sizes and parameter values, ensuring that the numerical solution remains bounded and converges to the correct solution, even for large or small values of the step size h.

3.1. Explicit Block Methods

For the family of explicit block methods, a general formulation (3) is adopted in which the coefficient matrix A is specified as in (4), the matrix B 2 is identically zero, and B 1 is non-zero matrix and is applied to the scalar test problem u = λ u , with λ C , where it reduces to the following difference equation:
U n + 1 = ( A + h ^ B 1 ) U n , where h ^ = λ h .
The characteristic polynomial of the method, as derived from Equation (28), is given by
k 4 + T 1 ( h ^ ) k 3 + T 2 ( h ^ ) k 2 + T 3 ( h ^ ) k + T 4 = 0 .
The stability polynomial is solved for h ^ , subject to the condition | k | 1 , using MATHEMATICA, and the resulting regions in the complex plane illustrate the method’s stability characteristics. This analysis reveals the influence of step size and parameter η (for methods E 2 E 5 ) on overall stability.

3.2. Implicit Block Methods

Considering a general form (3) for implicit block method that incorporates the non-zero coefficients A, B 1 , and B 2 , with the corresponding function evaluations at different time steps, is applied to the scalar test equation u = λ u , with λ C , the method results in the following difference equation:
( I h ^ B 2 ) U n + 1 = ( A + h ^ B 1 ) U n , where h ^ = λ h .
The characteristic polynomial for this method, derived from Equation (29), is
k 4 + S 1 ( h ^ ) k 3 + S 2 ( h ^ ) k 2 + S 3 ( h ^ ) k + S 4 = 0 .
Stability regions in the complex plane are obtained from the stability polynomial | k | 1 , utilizing MATHEMATICA, and examined for various step sizes and parameter values, η for the I m 2 I m 5 methods. Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24, Figure 25 and Figure 26 depict these regions for the derived explicit and implicit block methods, showing that the implicit variants consistently exhibit larger stability domains than their explicit counterparts.

4. Numerical Results

We investigated seven oscillatory ODE test problems and one PDE problem, the Telegraph equation. The accuracy associated with each case was determined using the following relation:
Errham = ln ( | u ( t i ) u i | ) ln ( 10 ) .
MATHEMATICA (Version number: 11.0.1.0) was used to solve the ODEs, while MATLAB R2017a was used to solve the PDE. An implicit optimized hybrid block method of atleast order five [24] and three ODE solvers from the Runge–Kutta family [25,26] have been compared: the fourth-order classical Runge–Kutta method (RK4), the fifth-order Cash–Karp method (RKCash), and the fifth-order Fehlberg method (RKFehl). For each problem, the first three steps were calculated using a high-order Runge–Kutta algorithm. Following this, the explicit block methods, as described earlier, served as the predictors, while the implicit block methods, also outlined above, were employed as the correctors.
The following numerical methods were employed to address the given problems:
  • Hybrid: Optimized hybrid block method.
  • RK4: Classical fourth-order Runge–Kutta method.
  • RKCash: Fifth-order Cash–Karp method.
  • RKFehl: Fifth-order Fehlberg method.
  • M1: The method incorporates I m 1 in the predictor–corrector mode, with E 1 as the predictor.
  • M2: The method utilizes E 2 as the predictor and I m 2 as the corrector.
  • M3: The method applies E 3 as the predictor and I m 3 as the corrector.
  • M4: This method uses the explicit method E 4 as the predictor and I m 4 as the corrector.
  • M5: The method incorporates I m 5 in the predictor–corrector mode, with E 5 as the predictor.
Example 1. 
Consider the Stiefel and Bettis [27] problem, where the system of equations governing it is as follows:
u 1 ( t ) = u 1 ( t ) + 0.001 cos ( t ) , u 1 ( 0 ) = 1 , u 1 ( 0 ) = 0 , u 2 ( t ) = u 2 ( t ) + 0.001 sin ( t ) , u 2 ( 0 ) = 0 , u 2 ( 0 ) = 0.9995 .
The exact solution is
u 1 ( t ) = cos ( t ) + 0.0005 t sin ( t ) , u 2 ( t ) = sin ( t ) 0.0005 t cos ( t ) .
The domain is defined to be [ 0 , 10000 ] . Numerical experiments were performed using the derived block methods M 1 through M 5 with ω = 1 , and the results are illustrated in Figure 27. The following key insights have been drawn from the graphical comparison of these methods:
  • The hybrid block method [24] (hybrid) underperformed, falling short of the efficiency and accuracy demonstrated by the other methods.
  • The classical fourth-order Runge–Kutta method (RK4) exhibited the lowest accuracy among all methods considered.
  • The fifth-order Runge–Kutta–Cash–Karp method (RKCash) demonstrated improved accuracy over both the Runge–Kutta–Fehlberg method (RKFehl) and RK4.
  • The proposed implicit block methods M 1 M 5 consistently outperformed the traditional Runge–Kutta-based schemes (RK4, RKFehl, and RKCash) in terms of numerical accuracy and computational time.
  • Method M 2 showed a notable improvement over M 1 in the early stages of computation but later M 1 overtook the position.
  • Method M 3 further enhanced the accuracy compared to M 2 , indicating a clear progression in performance.
  • Among all methods tested, M 5 delivered the most accurate results, establishing its superiority in this comparative analysis.
Example 2. 
The inhomogeneous linear problem, examined by Franco et al. [28], is as follows:
u 1 ( t ) = 1 2 μ 2 + 1 u 1 ( t ) 1 2 μ 2 1 u 2 ( t ) , u 1 ( 0 ) = 1 , u 1 ( 0 ) = 1 , u 2 ( t ) = 1 2 μ 2 1 u 1 ( t ) 1 2 μ 2 + 1 u 2 ( t ) , u 2 ( 0 ) = 1 , u 2 ( 0 ) = 1 .
The exact solution is
u 1 ( t ) = cos ( t ) + sin ( t ) , u 2 ( t ) = cos ( t ) sin ( t ) .
Choosing μ = 10 4 and the solution domain as [ 0 , 10 , 000 ] , and the numerical solution of the system of equation was computed with ω = 1 . The computational performance of the various methods, as illustrated in Figure 28, revealed the following key observations:
  • The hybrid method was least efficient among the considered methods.
  • Of the classical Runge–Kutta methods tested, RK4 attained the poorest accuracy, in contrast to RKFehl, which offered a moderate gain in precision.
  • RKCash provided enhanced accuracy compared to RKFehl; however, the block method M 1 significantly surpassed both in performance.
  • Method M 2 offered a marked improvement over M 1 , reflecting increased precision across the tested step sizes.
  • For relatively large step sizes, M 3 initially outperformed all other methods, followed by M 5 , M 4 , and M 2 , respectively.
  • While M 5 initially yielded better results than M 4 , the latter marginally overtook M 5 as the step size decreased, suggesting improved efficiency in finer resolutions.
  • Among all the methods considered, M 3 consistently yielded the most accurate results on average.
Example 3. 
The problem presented by Franco and Palacios is defined as follows [29]:
u 1 ( t ) = u 1 ( t ) + ϵ cos ( ϑ t ) , u 1 ( 0 ) = 1 , u 1 ( 0 ) = 0 , u 2 ( t ) = u 2 ( t ) + ϵ sin ( ϑ t ) , u 2 ( 0 ) = 0 , u 2 ( 0 ) = 1 , 0 t 10 , 000
with the analytical solution given as
u 1 ( t ) = 1 ϵ ϑ 2 1 ϑ 2 cos ( t ) + ϵ 1 ϑ 2 cos ( ϑ t ) , u 2 ( t ) = 1 ϵ ϑ ϑ 2 1 ϑ 2 sin ( t ) + ϵ 1 ϑ 2 sin ( ϑ t ) ,
where ϵ = 0.001 and ϑ = 0.01 . To apply modified block methods, consider ω = m a x ( 1 , | ϑ | ) .
The essential points derived from Figure 29 are presented as follows:
  • Within the tested CPU time range, the hybrid block method (Hybrid) consistently fell below the performance benchmark set by the other methods.
  • RKCash outperformed both RKFehl and RK4, with RK4 showing the least accuracy.
  • The accuracy of the block method M 1 surpassed that of the traditional Runge–Kutta approaches.
  • Method M 2 significantly outperformed M 1 in terms of performance.
  • A reduction in step size led to a consistent enhancement in the accuracy of M 2 .
  • While M 4 was more accurate than M 2 for larger step sizes, both methods achieved the same level of accuracy as the step size reduced.
  • M 5 and M 3 were nearly identical in terms of accuracy.
  • Among all the methods, M 5 and M 3 were the most accurate.
The hybrid block method was excluded from further comparisons, as initial results demonstrated that it was computationally expensive and consistently less efficient than the Runge–Kutta methods and the proposed methods across the tested examples.
Example 4. 
Simos studied the nonlinear problem in [30] described as follows:
u 1 ( t ) = φ 2 u 1 ( t ) + 2 u 1 ( t ) u 2 ( t ) sin ( 2 φ t ) u 1 ( t ) 2 + u 2 ( t ) 2 3 2 , u 1 ( 0 ) = 1 , u 1 ( 0 ) = 0 , u 2 ( t ) = φ 2 u 2 ( t ) + u 1 ( t ) 2 u 2 ( t ) 2 cos ( 2 φ t ) u 1 ( t ) 2 + u 2 ( t ) 2 3 2 , u 2 ( 0 ) = 0 , u 2 ( 0 ) = φ ,
where φ = 10 , t [ 0 , 10000 ] , and the exact solution is
u 1 ( t ) = cos ( φ t ) , u 2 ( t ) = sin ( φ t ) .
For ω = 10 , the numerical results are presented in Figure 30. The following points summarize the key observations:
  • The Runge–Kutta methods exhibited considerable computational overhead, yielding only marginal to negligible improvements in accuracy.
  • Despite increased CPU time, RK4 failed to demonstrate a meaningful enhancement in performance.
  • RKCash surpassed both RKFehl and RK4 in terms of overall efficiency and accuracy.
  • The block method M 1 consistently provided more precise results compared to the traditional Runge-Kutta approaches.
  • Method M 2 significantly outperformed M 1 in terms of both computational efficiency and accuracy.
  • Although M 2 initially under-performed compared to M 4 in terms of accuracy, it eventually surpassed M 4 as the step size decreased, demonstrating superior performance.
  • Methods M 3 and M 5 delivered nearly identical levels of accuracy.
  • Among all methods, M 5 and M 3 exhibited the highest accuracy.
Example 5. 
The nonlinear first-order differential problem studied by Petzold [31] is defined as follows:
u 1 ( t ) = λ u 2 ( t ) , u 1 ( 0 ) = 1 , u 2 ( t ) = λ u 1 ( t ) + α λ sin ( λ t ) , u 2 ( 0 ) = α 2 λ 2 ,
with the analytical solution defined as
u 1 ( t ) = 1 α 2 λ t cos ( λ t ) , u 2 ( t ) = 1 α 2 λ t sin ( λ t ) α 2 λ 2 cos ( λ t ) .
The parameters are α = 100 , λ = 1000 , t [ 0 , 100 ] . To employ modified block methods, ω = 1000 was chosen, and the results are plotted in Figure 31; the following lists the observations obtained:
  • RK4 failed to achieve an acceptable accuracy within the allocated CPU time.
  • RKCash demonstrated superior overall performance compared to RKFehl.
  • The block method M 1 yielded more accurate results than RKCash, with the accuracy steadily improving as the CPU time increased.
  • For large step sizes, M 1 was the least accurate among the block methods, while M 5 achieved the highest accuracy.
  • Method M 2 initially outperformed M 1 in both computational efficiency and accuracy, although this trend reversed as the step size decreased.
  • Methods M 3 and M 4 exhibited comparable performance in terms of both accuracy and efficiency up to a certain threshold, after which M 3 surpassed M 4 .
  • Method M 5 emerge as the best performer overall.
Example 6. 
The two-body gravitational problem is considered as follows:
u 1 ( t ) = u 1 ( t ) u 1 ( t ) 2 + u 2 ( t ) 2 3 2 , u 1 ( 0 ) = 1 , u 1 ( 0 ) = 0 , u 2 ( t ) = u 2 ( t ) u 1 ( t ) 2 + u 2 ( t ) 2 3 2 , u 2 ( 0 ) = 0 , u 2 ( 0 ) = 1 ,
and the exact solution is
u 1 ( t ) = cos ( t ) , u 2 ( t ) = sin ( t ) .
With the choice of ω = 1 , the numerical results for 0 t 10 , 000 were obtained and are displayed in Figure 32. The key findings are summarized as follows:
  • The Runge–Kutta methods (RK4, RKCash, and RKFehl) exhibited marginal improvements, maintaining a steady level of performance without significant advancement.
  • The block method M 1 demonstrated superior accuracy compared to the traditional Runge–Kutta methods.
  • Method M 2 significantly outperformed M 1 in terms of both accuracy and efficiency.
  • As the step size decreased, M 2 initially showed an increase in accuracy, which eventually stabilized.
  • Initially, M 4 surpassed M 1 in performance, although it did not exceed the performance of M 2 .
  • Method M 3 was on par with M 5 in terms of both accuracy and computational efficiency.
  • The block method M 3 provided more precise results compared to the others on average.
Example 7. 
Consider the perturbed two-body Kepler’s problem:
u 1 ( t ) = u 1 ( t ) u 1 ( t ) 2 + u 2 ( t ) 2 3 / 2 μ μ + 2 u 1 ( t ) u 1 ( t ) 2 + u 2 ( t ) 2 5 / 2 , 0 t 10000 ,
u 1 ( 0 ) = 1 , u 1 ( 0 ) = 0 ,
u 2 ( t ) = u 2 ( t ) u 1 ( t ) 2 + u 2 ( t ) 2 3 / 2 μ μ + 2 u 2 ( t ) u 1 ( t ) 2 + u 2 ( t ) 2 5 / 2 ,
u 2 ( 0 ) = 0 , u 2 ( 0 ) = 1 + μ ,
where its analytical solution is
u 1 ( t ) = cos ( t + μ t ) , u 2 ( t ) = sin ( t + μ t ) .
The value ω = 1 + μ μ + 2 , μ = 0.1 was considered. From Figure 33, the following observations can be made:
  • The Runge–Kutta methods (RK4, RKFehl, and RKCash) showed only marginal improvements in both accuracy and efficiency, with RK4 performing the least effectively.
  • The block method M 1 surpassed all Runge–Kutta methods in terms of accuracy.
  • Method M 4 delivered superior performance compared to M 1 .
  • Method M 3 maintained a consistent level of accuracy, even when using large step sizes, with its performance remaining relatively stable regardless of the chosen step size.
  • The performance of M 3 was equivalent to that of M 5 .
  • Method M 3 outperformed M 4 in terms of both accuracy and computational efficiency.
  • On average, M 3 and M 5 outperformed all other methods in terms of both accuracy and efficiency.
Example 8. 
Consider the hyperbolic telegraph equation
u t t ( z , t ) + 2 a u t ( z , t ) + b 2 u ( z , t ) = u z z ( z , t ) + f ( z , t ) , 0 z 1 , t 0 .
The initial and boundary conditions are given by
u ( z , 0 ) = sin ( z ) , u t ( z , 0 ) = 0 , 0 z 1 ;
u ( 0 , t ) = 0 , u ( 1 , t ) = cos ( t ) sin ( 1 ) , t 0 .
The parameters are chosen as a = 6 , b = 2 , and
f ( z , t ) = 2 a sin ( t ) sin ( z ) + b 2 cos ( t ) sin ( z ) .
The analytic solution is
u ( z , t ) = cos ( t ) sin ( z ) .
For the block methods, the parameter ω = 1 was selected. These methods were implemented using the algorithm outlined in [19]. Using [19], block methods were combined with the differential quadrature method, utilizing unified splines for the spatial variable. The following key observations can be made:
  • The error analysis in Figure 34 for t = 1 shows that M 3 provided superior accuracy relative to M 1 .
  • Methods M 3 , M 4 , and M 5 exhibited virtually identical accuracy across the spatial grid.
  • Method M 3 significantly outperformed M 1 in terms of accuracy.
  • The CPU times for t = 1 differed among the methods: M 1 took 1.810412 s, M 2 required 0.021124 s, M 3 completed in 0.020640 s, M 4 took 0.021212 s, and M 5 required 0.017187 s.
  • In terms of overall performance, M 2 outperformed the other methods.
The performance of frequency-dependent approaches, including the newly proposed method, largely hinges on the appropriate selection of the parameter ω . Often, this parameter can be directly inferred from the characteristics of the specific problem being addressed. In cases where determining ω is less straightforward, several strategies for its estimation have been developed and discussed in existing studies [2,4].

5. Conclusions

In summary, the block methods demonstrated a marked advantage over the traditional Runge–Kutta methods and optimized hybrid block method, with M 1 notably outperforming RK4, RKFehl, and RKCash. As the study advanced to the implementation of the modified block methods M 2 , M 3 , M 4 , and M 5 , the results demonstrated a consistent enhancement in both accuracy and computational efficiency. Among these, M 2 and M 4 exhibited a competitive performance, with no clear winner emerging, as the effectiveness of numerical methods is highly contingent upon the specific characteristics of the problem at hand. However, M 5 consistently proved to be the most robust method, delivering superior results across a range of problem types. For partial differential equations (PDEs), method M 2 particularly excelled, showcasing its potential for complex applications. This study not only provides a thorough evaluation of the methods’ performance but also underscores the broad applicability and potential of modified implicit block methods in diverse numerical scenarios. These findings expand the scope for their use in more complex and varied computational problems, offering promising avenues for future research and development.

Author Contributions

Conceptualization, N.H.A., A.K., T.E.S. and R.T.A.; methodology, N.H.A., A.K., T.E.S. and R.T.A.; software, A.K.; validation, N.H.A., A.K., T.E.S. and R.T.A.; formal analysis, T.E.S.; investigation, N.H.A.; data curation, A.K.; writing—original draft preparation, A.K.; writing—review and editing, N.H.A., T.E.S. and R.T.A.; visualization, A.K. and T.E.S.; supervision, T.E.S.; funding acquisition, T.E.S. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP-RP25).

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Appendix A

Appendix A.1. Amplification-Fitted and Phase-Fitted Block Method: Method 3 (Im3 and E3)

A F = η ( B 1 [ 11 ] + B 1 [ 12 ] cos ( η ) + B 1 [ 13 ] cos ( 2 η ) + B 1 [ 14 ] cos ( 3 η ) ) η ( B 2 [ 11 ] cos ( 4 η ) + B 2 [ 12 ] cos ( 5 η ) + B 2 [ 13 ] cos ( 6 η ) + B 2 [ 14 ] cos ( 7 η ) ) 3 10 sin ( 2 η ) 2 5 sin ( 3 η ) + sin ( 4 η ) sin ( η ) 5 ( B 1 [ 12 ] + 4 B 1 [ 13 ] + 9 B 1 [ 14 ] ) η 2 ( 16 B 2 [ 11 ] + 25 B 2 [ 12 ] + 36 B 2 [ 13 ] + 49 B 2 [ 14 ] ) η 2 2 η ( B 1 [ 21 ] + B 1 [ 22 ] cos ( η ) + B 1 [ 23 ] cos ( 2 η ) + B 1 [ 24 ] cos ( 3 η ) ) η ( B 2 [ 21 ] cos ( 4 η ) + B 2 [ 22 ] cos ( 5 η ) + B 2 [ 23 ] cos ( 6 η ) + B 2 [ 24 ] cos ( 7 η ) ) 3 10 sin ( 2 η ) 2 5 sin ( 3 η ) + sin ( 5 η ) sin ( η ) 5 ( B 1 [ 22 ] + 4 B 1 [ 23 ] + 9 B 1 [ 24 ] ) η 2 ( 16 B 2 [ 21 ] + 25 B 2 [ 22 ] + 36 B 2 [ 23 ] + 49 B 2 [ 24 ] ) η 2 3 η ( B 1 [ 31 ] + B 1 [ 32 ] cos ( η ) + B 1 [ 33 ] cos ( 2 η ) + B 1 [ 34 ] cos ( 3 η ) ) η ( B 2 [ 31 ] cos ( 4 η ) + B 2 [ 32 ] cos ( 5 η ) + B 2 [ 33 ] cos ( 6 η ) + B 2 [ 34 ] cos ( 7 η ) ) 3 10 sin ( 2 η ) 2 5 sin ( 3 η ) + sin ( 6 η ) sin ( η ) 5 ( B 1 [ 32 ] + 4 B 1 [ 33 ] + 9 B 1 [ 34 ] ) η 2 ( 25 B 2 [ 32 ] + 36 B 2 [ 33 ] + 49 B 2 [ 34 ] + 16 B 2 [ 31 ] ) η 2 4 η ( B 1 [ 41 ] + B 1 [ 42 ] cos ( η ) + B 1 [ 43 ] cos ( 2 η ) + B 1 [ 44 ] cos ( 3 η ) ) η ( B 2 [ 41 ] cos ( 4 η ) + B 2 [ 42 ] cos ( 5 η ) + B 2 [ 43 ] cos ( 6 η ) + B 2 [ 44 ] cos ( 7 η ) ) 3 10 sin ( 2 η ) 2 5 sin ( 3 η ) + sin ( 7 η ) sin ( η ) 5 ( B 1 [ 42 ] + 4 B 1 [ 43 ] + 9 B 1 [ 44 ] ) η 2 ( 16 B 2 [ 41 ] + 25 B 2 [ 42 ] + 36 B 2 [ 43 ] + 49 B 2 [ 44 ] ) η 2 5 ,
P h E r = cos ( η ) 5 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 4 η ) + η ( B 1 [ 12 ] sin ( η ) + B 1 [ 13 ] sin ( 2 η ) + B 1 [ 14 ] sin ( 3 η ) ) + η ( B 2 [ 11 ] sin ( 4 η ) + B 2 [ 12 ] sin ( 5 η ) + B 2 [ 13 ] sin ( 6 η ) + B 2 [ 14 ] sin ( 7 η ) ) 1 10 B 1 [ 12 ] 2 B 1 [ 13 ] 3 B 1 [ 14 ] 4 B 2 [ 11 ] 5 B 2 [ 12 ] 6 B 2 [ 13 ] 7 B 2 [ 14 ] + 11 cos ( η ) 5 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 5 η ) + η ( B 1 [ 22 ] sin ( η ) + B 1 [ 23 ] sin ( 2 η ) + B 1 [ 24 ] sin ( 3 η ) ) + η ( B 2 [ 21 ] sin ( 4 η ) + B 2 [ 22 ] sin ( 5 η ) + B 2 [ 23 ] sin ( 6 η ) + B 2 [ 24 ] sin ( 7 η ) ) 1 10 B 1 [ 22 ] 2 B 1 [ 23 ] 3 B 1 [ 24 ] 4 B 2 [ 21 ] 5 B 2 [ 22 ] 6 B 2 [ 23 ] 7 B 2 [ 24 ] + 20 cos ( η ) 5 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 6 η ) + η ( B 1 [ 32 ] sin ( η ) + B 1 [ 33 ] sin ( 2 η ) + B 1 [ 34 ] sin ( 3 η ) ) + η ( B 2 [ 31 ] sin ( 4 η ) + B 2 [ 32 ] sin ( 5 η ) + B 2 [ 33 ] sin ( 6 η ) + B 2 [ 34 ] sin ( 7 η ) ) 1 10 B 1 [ 32 ] 2 B 1 [ 33 ] 3 B 1 [ 34 ] 5 B 2 [ 32 ] 6 B 2 [ 33 ] 7 B 2 [ 34 ] 4 B 2 [ 31 ] + 31 cos ( η ) 5 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 7 η ) + η ( B 1 [ 42 ] sin ( η ) + B 1 [ 43 ] sin ( 2 η ) + B 1 [ 44 ] sin ( 3 η ) ) + η ( B 2 [ 41 ] sin ( 4 η ) + B 2 [ 42 ] sin ( 5 η ) + B 2 [ 43 ] sin ( 6 η ) + B 2 [ 44 ] sin ( 7 η ) ) 1 10 B 1 [ 42 ] 2 B 1 [ 43 ] 3 B 1 [ 44 ] 4 B 2 [ 41 ] 5 B 2 [ 42 ] 6 B 2 [ 43 ] 7 B 2 [ 44 ] + 44 .

Appendix A.2. Implicit Block Method Im3

B 1 [ 11 ] = 138469 cot ( 7 η ) ( cos ( η ) tan ( 7 η ) sin ( η ) ) 604800 + 167 cot ( 7 η ) ( cos ( 5 η ) tan ( 7 η ) sin ( 5 η ) ) 4480 8013 cot ( 7 η ) ( cos ( 2 η ) tan ( 7 η ) sin ( 2 η ) ) 22400 116213 cot ( 7 η ) ( cos ( 3 η ) tan ( 7 η ) sin ( 3 η ) ) 120960 55397 cot ( 7 η ) ( cos ( 4 η ) tan ( 7 η ) sin ( 4 η ) ) 120960 3061 cot ( 7 η ) ( cos ( 6 η ) tan ( 7 η ) sin ( 6 η ) ) 604800 cot ( 7 η ) 10 η ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 4 η ) + 2 sin ( η ) tan ( 7 η ) + 3 sin ( 2 η ) tan ( 7 η ) + 4 sin ( 3 η ) tan ( 7 η ) 10 sin ( 4 η ) tan ( 7 η ) + 1 )
B 1 [ 21 ] = 64937 cot ( 7 η ) ( cos ( η ) tan ( 7 η ) sin ( η ) ) 302400 + 8927 cot ( 7 η ) ( cos ( 6 η ) tan ( 7 η ) sin ( 6 η ) ) 302400 2951 cot ( 7 η ) ( cos ( 5 η ) tan ( 7 η ) sin ( 5 η ) ) 6720 13709 cot ( 7 η ) ( cos ( 4 η ) tan ( 7 η ) sin ( 4 η ) ) 12096 14027 cot ( 7 η ) ( cos ( 2 η ) tan ( 7 η ) sin ( 2 η ) ) 33600 47993 cot ( 7 η ) ( cos ( 3 η ) tan ( 7 η ) sin ( 3 η ) ) 60480 cot ( 7 η ) 10 η ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 5 η ) + 2 sin ( η ) tan ( 7 η ) + 3 sin ( 2 η ) tan ( 7 η ) + 4 sin ( 3 η ) tan ( 7 η ) 10 sin ( 5 η ) tan ( 7 η ) + 1 )
B 1 [ 31 ] = 144869 cot ( 7 η ) ( cos ( η ) tan ( 7 η ) sin ( η ) ) 604800 5721 cot ( 7 η ) ( cos ( 5 η ) tan ( 7 η ) sin ( 5 η ) ) 4480 7213 cot ( 7 η ) ( cos ( 2 η ) tan ( 7 η ) sin ( 2 η ) ) 22400 122869 cot ( 7 η ) ( cos ( 3 η ) tan ( 7 η ) sin ( 3 η ) ) 120960 92293 cot ( 7 η ) ( cos ( 4 η ) tan ( 7 η ) sin ( 4 η ) ) 120960 221141 cot ( 7 η ) ( cos ( 6 η ) tan ( 7 η ) sin ( 6 η ) ) 604800 cot ( 7 η ) 10 η ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 6 η ) + 2 sin ( η ) tan ( 7 η ) + 3 sin ( 2 η ) tan ( 7 η ) + 4 sin ( 3 η ) tan ( 7 η ) 10 sin ( 6 η ) tan ( 7 η ) + 1 )
B 1 [ 41 ] = 44057 cot ( 7 η ) ( cos ( η ) tan ( 7 η ) sin ( η ) ) 302400 121 448 cot ( 7 η ) ( cos ( 5 η ) tan ( 7 η ) sin ( 5 η ) ) 7449 cot ( 7 η ) ( cos ( 2 η ) tan ( 7 η ) sin ( 2 η ) ) 11200 17161 cot ( 7 η ) ( cos ( 3 η ) tan ( 7 η ) sin ( 3 η ) ) 60480 107713 cot ( 7 η ) ( cos ( 4 η ) tan ( 7 η ) sin ( 4 η ) ) 60480 460193 cot ( 7 η ) ( cos ( 6 η ) tan ( 7 η ) sin ( 6 η ) ) 302400 cot ( 7 η ) 10 η ( 2 cos ( η ) + 3 cos ( 2 η ) + 4 cos ( 3 η ) 10 cos ( 7 η ) + 2 sin ( η ) tan ( 7 η ) + 3 sin ( 2 η ) tan ( 7 η ) + 4 sin ( 3 η ) tan ( 7 η ) 10 sin ( 7 η ) tan ( 7 η ) + 1 )

Appendix A.3. Explicit Block Method E3

P h E r = η B 1 [ 12 ] sin ( η ) + B 1 [ 13 ] sin ( 2 η ) + B 1 [ 11 ] sec ( 3 η ) B 1 [ 12 ] cos ( η ) sec ( 3 η ) B 1 [ 13 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) ) sec ( 3 η ) 10 η sin ( 3 η ) 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 4 η ) cos ( η ) 5 1 10 B 1 [ 12 ] 2 B 1 [ 13 ] 3 B 1 [ 11 ] sec ( 3 η ) B 1 [ 12 ] cos ( η ) sec ( 3 η ) B 1 [ 13 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) ) sec ( 3 η ) 10 η + 11 η B 1 [ 22 ] sin ( η ) + B 1 [ 23 ] sin ( 2 η ) + B 1 [ 21 ] sec ( 3 η ) B 1 [ 22 ] cos ( η ) sec ( 3 η ) B 1 [ 23 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) ) sec ( 3 η ) 10 η sin ( 3 η ) 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 5 η ) cos ( η ) 5 1 10 B 1 [ 22 ] 2 B 1 [ 23 ] 3 B 1 [ 21 ] sec ( 3 η ) B 1 [ 22 ] cos ( η ) sec ( 3 η ) B 1 [ 23 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) ) sec ( 3 η ) 10 η + 20 η B 1 [ 32 ] sin ( η ) + B 1 [ 33 ] sin ( 2 η ) + B 1 [ 31 ] sec ( 3 η ) B 1 [ 32 ] cos ( η ) sec ( 3 η ) B 1 [ 33 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 6 η ) ) sec ( 3 η ) 10 η sin ( 3 η ) 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 6 η ) cos ( η ) 5 1 10 B 1 [ 32 ] 2 B 1 [ 33 ] 3 B 1 [ 31 ] sec ( 3 η ) B 1 [ 32 ] cos ( η ) sec ( 3 η ) B 1 [ 33 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 6 η ) ) sec ( 3 η ) 10 η + 31 η B 1 [ 42 ] sin ( η ) + B 1 [ 43 ] sin ( 2 η ) + B 1 [ 41 ] sec ( 3 η ) B 1 [ 42 ] cos ( η ) sec ( 3 η ) B 1 [ 43 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 7 η ) ) sec ( 3 η ) 10 η sin ( 3 η ) 3 10 cos ( 2 η ) 2 5 cos ( 3 η ) + cos ( 7 η ) cos ( η ) 5 1 10 B 1 [ 42 ] 2 B 1 [ 43 ] 3 B 1 [ 41 ] sec ( 3 η ) B 1 [ 42 ] cos ( η ) sec ( 3 η ) B 1 [ 43 ] cos ( 2 η ) sec ( 3 η ) ( 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 7 η ) ) sec ( 3 η ) 10 η + 44
  • The coefficient matrix for amplification-fitted and phase-fitted explicit block method is
B 1 = 13 40 199 120 B 1 [ 13 ] B 1 [ 14 ] B 1 [ 21 ] 209 20 281 20 8 cot ( 3 η ) + csc ( 3 η ) ( 4 cos ( η ) + 6 cos ( 2 η ) 20 cos ( 5 η ) 209 η sin ( η ) + 281 η sin ( 2 η ) + 2 ) 20 η B [ 31 ] 4199 120 5461 120 48 cot ( 3 η ) + csc ( 3 η ) ( 24 cos ( η ) + 36 cos ( 2 η ) 120 cos ( 6 η ) 4199 η sin ( η ) + 5461 η sin ( 2 η ) + 12 ) 120 η B 1 [ 41 ] 5207 60 6523 60 24 cot ( 3 η ) + csc ( 3 η ) ( 12 cos ( η ) + 18 cos ( 2 η ) 60 cos ( 7 η ) 5207 η sin ( η ) + 6523 η sin ( 2 η ) + 6 ) 60 η
B 1 [ 13 ] = sec η 2 120 η ( 160 η cos η 2 160 η cos 3 η 2 + 39 η cos 5 η 2 48 sin η 2 + 36 sin 3 η 2 + 12 sin 5 η 2 )
B 1 [ 14 ] = csc ( η ) sin η 2 60 η ( 160 η cos η 2 39 η cos 3 η 2 + 36 ( sin η 2 + 3 sin 3 η 2 ) )
B 1 [ 21 ] = 1 20 η cos η 2 + cos 3 η 2 + cos 5 η 2 [ 72 η cos η 2 209 η cos 3 η 2 + 2 ( 4 sin η 2 7 sin 3 η 2 + sin 5 η 2 ) ]
B 1 [ 31 ] = 5461 η + 48 sin ( η ) 216 sin ( 2 η ) 8398 η cos ( η ) 72 tan η 2 120 ( η + 2 η cos ( 2 η ) )
B 1 [ 41 ] = 6523 η 96 sin ( η ) + 12 sin ( 2 η ) 120 sin ( 3 η ) 10414 η cos ( η ) + 24 tan η 2 60 ( η + 2 η cos ( 2 η ) )

Appendix A.4. Implicit Block Method Im4

B 1 [ 11 ] = csc η 2 sec 3 η 2 4838400 η 2 ( 30 cos ( 2 η ) + 20 cos ( 4 η ) + 12 cos ( 6 η ) + 6 cos ( 8 η ) + 2 cos ( 10 η ) + 21 ) [ 692345 sin ( η ) η 2 + 2250094 sin ( 2 η ) η 2 + 4720224 sin ( 3 η ) η 2 + 6662569 sin ( 4 η ) η 2 + 6258109 sin ( 5 η ) η 2 + 5022694 sin ( 6 η ) η 2 + 3832369 sin ( 7 η ) η 2 + 2642044 sin ( 8 η ) η 2 + 1429174 sin ( 9 η ) η 2 + 493289 sin ( 10 η ) η 2 + 138469 sin ( 11 η ) η 2 + 1088640 cos ( η ) η 181440 cos ( 2 η ) η 1451520 cos ( 3 η ) η 604800 cos ( 4 η ) η + 1209600 cos ( 5 η ) η + 1209600 cos ( 6 η ) η + 1209600 η cos ( 7 η ) + 1209600 cos ( 8 η ) η + 1209600 cos ( 9 η ) η + 604800 cos ( 10 η ) η + 241920 cos ( 11 η ) η + 60480 cos ( 12 η ) η + 846720 η 241920 sin ( η ) 544320 sin ( 2 η ) 967680 sin ( 3 η ) 604800 sin ( 4 η ) ]
B 1 [ 21 ] = csc η 2 sec 3 η 2 2419200 η 2 ( 30 cos ( 2 η ) + 20 cos ( 4 η ) + 12 cos ( 6 η ) + 6 cos ( 8 η ) + 2 cos ( 10 η ) + 21 ) [ 324685 sin ( η ) η 2 + 1154342 sin ( 2 η ) η 2 + 2314272 sin ( 3 η ) η 2 + 3528437 sin ( 4 η ) η 2 + 3915537 sin ( 5 η ) η 2 + 3274462 sin ( 6 η ) η 2 + 2367797 sin ( 7 η ) η 2 + 1461132 sin ( 8 η ) η 2 + 687262 sin ( 9 η ) η 2 + 256117 sin ( 10 η ) η 2 + 64937 sin ( 11 η ) η 2 + 1149120 cos ( η ) η + 514080 cos ( 2 η ) η 120960 cos ( 3 η ) η 302400 cos ( 4 η ) η + 302400 cos ( 5 η ) η + 907200 cos ( 6 η ) η + 907200 cos ( 7 η ) η + 907200 cos ( 8 η ) η + 604800 cos ( 9 η ) η + 302400 cos ( 10 η ) η + 120960 cos ( 11 η ) η + 30240 cos ( 12 η ) η + 725760 η 120960 sin ( η ) 272160 sin ( 2 η ) 483840 sin ( 3 η ) 604800 sin ( 4 η ) 302400 sin ( 5 η ) ]
B 1 [ 31 ] = csc η 2 sec 3 η 2 4838400 η 2 ( 30 cos ( 2 η ) + 20 cos ( 4 η ) + 12 cos ( 6 η ) + 6 cos ( 8 η ) + 2 cos ( 10 η ) + 21 ) [ 724345 sin ( η ) η 2 + 2227694 sin ( 2 η ) η 2 + 4704864 sin ( 3 η ) η 2 + 7131209 sin ( 4 η ) η 2 + 7872509 sin ( 5 η ) η 2 + 7229414 sin ( 6 η ) η 2 + 5041649 sin ( 7 η ) η 2 + 2853884 sin ( 8 η ) η 2 + 1438454 sin ( 9 η ) η 2 + 484489 sin ( 10 η ) η 2 + 144869 sin ( 11 η ) η 2 + 3507840 cos ( η ) η + 2237760 cos ( 2 η ) η + 967680 cos ( 3 η ) η + 604800 cos ( 4 η ) η + 1209600 cos ( 5 η ) η + 1814400 cos ( 6 η ) η + 2419200 cos ( 7 η ) η + 1814400 cos ( 8 η ) η + 1209600 cos ( 9 η ) η + 604800 cos ( 10 η ) η + 241920 cos ( 11 η ) η + 60480 cos ( 12 η ) η + 2056320 η 241920 sin ( η ) 544320 sin ( 2 η ) 967680 sin ( 3 η ) 1209600 sin ( 4 η ) 1209600 sin ( 5 η ) 604800 sin ( 6 η ) ]
B 1 [ 41 ] = csc η 2 sec 3 η 2 2419200 η 2 ( 30 cos ( 2 η ) + 20 cos ( 4 η ) + 12 cos ( 6 η ) + 6 cos ( 8 η ) + 2 cos ( 10 η ) + 21 ) B i g [ 220285 sin ( η ) η 2 + 1245062 sin ( 2 η ) η 2 + 2262912 sin ( 3 η ) η 2 + 3352277 sin ( 4 η ) η 2 + 4180097 sin ( 5 η ) η 2 + 3392222 sin ( 6 η ) η 2 + 2440997 sin ( 7 η ) η 2 + 1489772 sin ( 8 η ) η 2 + 620222 sin ( 9 η ) η 2 + 289237 sin ( 10 η ) η 2 + 44057 sin ( 11 η ) η 2 + 2358720 cos ( η ) η + 1723680 cos ( 2 η ) η + 1088640 cos ( 3 η ) η + 907200 cos ( 4 η ) η + 1209600 cos ( 5 η ) η + 1512000 cos ( 6 η ) η + 1209600 cos ( 7 η ) η + 907200 cos ( 8 η ) η + 604800 cos ( 9 η ) η + 302400 cos ( 10 η ) η + 120960 cos ( 11 η ) η + 30240 cos ( 12 η ) η + 1330560 η 120960 sin ( η ) 272160 sin ( 2 η ) 483840 sin ( 3 η ) 604800 sin ( 4 η ) 604800 sin ( 5 η ) 604800 sin ( 6 η ) 302400 sin ( 7 η ) ]
B 2 [ 13 ] = 1 604800 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ 1743195 cos ( 3 η ) η 2 + 1107940 cos ( 4 η ) η 2 112725 cos ( 5 η ) η 2 969283 cot ( 7 η ) sin ( η ) η 2 1514457 cot ( 7 η ) sin ( 2 η ) η 2 4067455 cot ( 7 η ) sin ( 3 η ) η 2 1938895 cot ( 7 η ) sin ( 4 η ) η 2 + 157815 cot ( 7 η ) sin ( 5 η ) η 2 + 1693440 cos ( 3 η ) cot ( 7 η ) η 4233600 cos ( 4 η ) cot ( 7 η ) η + 423360 cot ( 7 η ) η + 120960 sin ( η ) η + 362880 sin ( 2 η ) η + 725760 sin ( 3 η ) η 2419200 sin ( 4 η ) η + 241920 cos ( 3 η ) 604800 cos ( 4 η ) + 162 cos ( 2 η ) 2671 η 2 + 7840 cot ( 7 η ) η + 1120 + cos ( η ) 138469 η 2 + 846720 cot ( 7 η ) η + 120960 + 60480 ]
B 2 [ 14 ] = csc ( 7 η ) sin 2 η 2 302400 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ 6619162 sin ( η ) η 2 + 13486319 sin ( 2 η ) η 2 + 17583626 sin ( 3 η ) η 2 + 16451348 sin ( 4 η ) η 2 + 13588262 sin ( 5 η ) η 2 + 9755893 sin ( 6 η ) η 2 + 5923524 sin ( 7 η ) η 2 + 2783500 sin ( 8 η ) η 2 + 508880 sin ( 9 η ) η 2 22545 sin ( 10 η ) η 2 13305600 cos ( η ) η 13305600 cos ( 2 η ) η 7257600 cos ( 3 η ) η 3386880 cos ( 4 η ) η 967680 cos ( 5 η ) η + 604800 cos ( 6 η ) η + 1451520 cos ( 7 η ) η + 1693440 cos ( 8 η ) η + 1209600 cos ( 9 η ) η 6652800 η + 604800 sin ( 3 η ) + 967680 sin ( 4 η ) + 1149120 sin ( 5 η ) + 1209600 sin ( 6 η ) + 1149120 sin ( 7 η ) + 967680 sin ( 8 η ) + 604800 sin ( 9 η ) ]
B 2 [ 23 ] = 1 302400 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ 719895 cos ( 3 η ) η 2 + 1370900 cos ( 4 η ) η 2 + 663975 cos ( 5 η ) η 2 454559 cot ( 7 η ) sin ( η ) η 2 883701 cot ( 7 η ) sin ( 2 η ) η 2 1679755 cot ( 7 η ) sin ( 3 η ) η 2 2399075 cot ( 7 η ) sin ( 4 η ) η 2 929565 cot ( 7 η ) sin ( 5 η ) η 2 + 846720 cos ( 3 η ) cot ( 7 η ) η 2116800 cos ( 5 η ) cot ( 7 η ) η + 211680 cot ( 7 η ) η + 60480 sin ( η ) η + 181440 sin ( 2 η ) η + 362880 sin ( 3 η ) η 1512000 sin ( 5 η ) η + 120960 cos ( 3 η ) 302400 cos ( 5 η ) + 18 cos ( 2 η ) 14027 η 2 + 35280 cot ( 7 η ) η + 5040 + cos ( η ) 64937 η 2 + 423360 cot ( 7 η ) η + 60480 + 30240 ]
B 2 [ 24 ] = 1 302400 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ csc ( 7 η ) ( cos ( η ) ( 362880 cos ( 6 η ) η 1663200 η + 64937 η 2 + 60480 sin ( 6 η ) ) + 1 2 ( 1460745 sin ( η ) η 2 + 3427250 sin ( 2 η ) η 2 + 2159685 sin ( 3 η ) η 2 + 1009944 sin ( 4 η ) η 2 + 389622 sin ( 5 η ) η 2 389622 sin ( 7 η ) η 2 504972 sin ( 8 η ) η 2 719895 sin ( 9 η ) η 2 685450 sin ( 10 η ) η 2 132795 sin ( 11 η ) η 2 + 1088640 cos ( 3 η ) η + 725760 cos ( 4 η ) η + 60480 cos ( 5 η ) η + 362880 cos ( 6 η ) η 60480 cos ( 7 η ) η + 362880 cos ( 8 η ) η + 362880 cos ( 9 η ) η 302400 cos ( 11 η ) η 302400 sin ( η ) + 120960 sin ( 3 η ) + 90720 sin ( 4 η ) + 60480 sin ( 6 η ) + 90720 sin ( 8 η ) + 120960 sin ( 9 η ) 302400 sin ( 11 η ) ) ) ]
B 2 [ 33 ] = 1 604800 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ 1843035 cos ( 3 η ) η 2 + 1845860 cos ( 4 η ) η 2 + 3861675 cos ( 5 η ) η 2 1014083 cot ( 7 η ) sin ( η ) η 2 1363257 cot ( 7 η ) sin ( 2 η ) η 2 4300415 cot ( 7 η ) sin ( 3 η ) η 2 3230255 cot ( 7 η ) sin ( 4 η ) η 2 5406345 cot ( 7 η ) sin ( 5 η ) η 2 + 1693440 cos ( 3 η ) cot ( 7 η ) η 4233600 cos ( 6 η ) cot ( 7 η ) η + 423360 cot ( 7 η ) η + 120960 sin ( η ) η + 362880 sin ( 2 η ) η + 725760 sin ( 3 η ) η 3628800 sin ( 6 η ) η + 241920 cos ( 3 η ) 604800 cos ( 6 η ) + 54 cos ( 2 η ) 7213 η 2 + 23520 cot ( 7 η ) η + 3360 + cos ( η ) 144869 η 2 + 846720 cot ( 7 η ) η + 120960 + 60480 ]
B 2 [ 34 ] = 1 604800 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ csc ( 7 η ) ( 8495685 2 sin ( η ) η 2 + 2307325 sin ( 2 η ) η 2 + 1843035 sin ( 3 η ) η 2 + 779004 sin ( 4 η ) η 2 + 1014083 2 sin ( 5 η ) η 2 724345 2 sin ( 7 η ) η 2 389502 sin ( 8 η ) η 2 1843035 sin ( 9 η ) η 2 461465 sin ( 10 η ) η 2 772335 2 sin ( 11 η ) η 2 + 725760 cos ( 4 η ) η + 423360 cos ( 5 η ) η + 362880 cos ( 6 η ) η + 302400 cos ( 7 η ) η + 362880 cos ( 8 η ) η + 362880 cos ( 9 η ) η 3628800 η + 90720 sin ( 4 η ) + 60480 sin ( 5 η ) + 60480 sin ( 6 η ) + 15 cos ( 3 η ) 72576 η + 122869 η 2 + 16128 sin ( 6 η ) + 60480 sin ( 7 η ) + 90720 sin ( 8 η ) 302400 sin ( 12 η ) ) ]
B 2 [ 43 ] = 1 302400 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ 257415 cos ( 3 η ) η 2 + 2154260 cos ( 4 η ) η 2 + 408375 cos ( 5 η ) η 2 308399 cot ( 7 η ) sin ( η ) η 2 1407861 cot ( 7 η ) sin ( 2 η ) η 2 600635 cot ( 7 η ) sin ( 3 η ) η 2 3769955 cot ( 7 η ) sin ( 4 η ) η 2 571725 cot ( 7 η ) sin ( 5 η ) η 2 + 846720 cos ( 3 η ) cot ( 7 η ) η 2116800 cos ( 7 η ) cot ( 7 η ) η + 211680 cot ( 7 η ) η + 60480 sin ( η ) η + 181440 sin ( 2 η ) η + 362880 sin ( 3 η ) η 2116800 sin ( 7 η ) η + 120960 cos ( 3 η ) 302400 cos ( 7 η ) + 162 cos ( 2 η ) 2483 η 2 + 3920 cot ( 7 η ) η + 560 + cos ( η ) 44057 η 2 + 423360 cot ( 7 η ) η + 60480 + 30240 ]
B 2 [ 44 ] = 1 302400 η 2 ( 6 cos ( 6 η ) 7 cot ( 7 η ) sin ( 6 η ) ) [ 1 2 cos ( 2 η ) + 2 cos ( 4 η ) + 2 cos ( 6 η ) + 1 ( 2 ( cos ( η ) + cos ( 3 η ) + cos ( 5 η ) ) ( 44057 η 2 + 60480 cos ( η ) + 162 2483 η 2 + 560 cos ( 2 η ) + 5 ( 430852 cos ( 4 η ) η 2 + 3 17161 η 2 + 8064 cos ( 3 η ) + 27 ( 3025 η 2 cos ( 5 η ) 224 ( 10 cos ( 7 η ) 2 η sin ( η ) 6 η sin ( 2 η ) 12 η sin ( 3 η ) + 70 η sin ( 7 η ) 1 ) ) ) ) ) 6 η cos ( 6 η ) ( 302400 cot ( 7 η ) + csc ( 7 η ) ( 60480 cos ( η ) 90720 cos ( 2 η ) 120960 cos ( 3 η ) + 44057 η sin ( η ) + 201123 η sin ( 2 η ) + 85805 η sin ( 3 η ) + 538565 η sin ( 4 η ) + 81675 η sin ( 5 η ) 30240 ) ) ]

Appendix A.5. Explicit Block Method E4

For the explicit method, B 2 is a zero matrix.
B 1 [ 12 ] = csc 3 ( η ) sec ( η ) sin 2 η 2 80 η 2 ( 52 sin ( η ) η 2 + 39 sin ( 2 η ) η 2 + 26 sin ( 3 η ) η 2 + 13 sin ( 4 η ) η 2 136 cos ( η ) η 92 cos ( 2 η ) η 96 cos ( 3 η ) η 44 cos ( 4 η ) η 72 η + 16 sin ( η ) + 36 sin ( 2 η ) + 64 sin ( 3 η ) + 40 sin ( 4 η ) )
B 1 [ 13 ] = csc η 2 sec 3 η 2 160 η 2 ( 26 sin ( η ) η 2 13 sin ( 2 η ) η 2 + 76 cos ( η ) η + 50 cos ( 2 η ) η + 40 cos ( 3 η ) η + 20 cos ( 4 η ) η + 34 η 8 sin ( η ) 18 sin ( 2 η ) 32 sin ( 3 η ) 20 sin ( 4 η ) )
B 1 [ 14 ] = csc 3 ( η ) sec ( η ) sin 2 η 2 80 η 2 ( 26 sin ( η ) η 2 13 sin ( 2 η ) η 2 + 88 cos ( η ) η + 92 cos ( 2 η ) η + 144 cos ( 3 η ) η + 80 cos ( 4 η ) η + 36 η 16 sin ( η ) 36 sin ( 2 η ) 64 sin ( 3 η ) 40 sin ( 4 η ) )
B 1 [ 21 ] = csc η 2 sec 3 η 2 160 η 2 ( 2 cos ( 2 η ) + 3 ) ( 209 sin ( η ) η 2 + 418 sin ( 2 η ) η 2 + 209 sin ( 3 η ) η 2 + 88 cos ( η ) η + 66 cos ( 2 η ) η + 68 cos ( 3 η ) η + 82 cos ( 4 η ) η + 40 cos ( 5 η ) η + 56 η 8 sin ( η ) 18 sin ( 2 η ) 32 sin ( 3 η ) 40 sin ( 4 η ) 20 sin ( 5 η ) )
B 1 [ 23 ] = csc 2 ( η ) tan η 2 20 η 2 ( 2 cos ( 2 η ) + 3 ) ( 209 sin ( η ) η 2 418 sin ( 2 η ) η 2 209 sin ( 3 η ) η 2 + 104 cos ( η ) η + 143 cos ( 2 η ) η + 110 cos ( 3 η ) η + 83 cos ( 4 η ) η + 60 cos ( 5 η ) η + 40 cos ( 6 η ) η + 20 cos ( 7 η ) η + 40 η 16 sin ( η ) 29 sin ( 2 η ) 30 sin ( 3 η ) 29 sin ( 4 η ) 26 sin ( 5 η ) 20 sin ( 6 η ) 10 sin ( 7 η ) )
B 1 [ 24 ] = csc 3 ( η ) sin 2 η 2 20 η 2 ( 2 cos ( 2 η ) + 3 ) ( 418 sin ( η ) η 2 + 209 sin ( 2 η ) η 2 64 cos ( η ) η 140 cos ( 2 η ) η 224 cos ( 3 η ) η 172 cos ( 4 η ) η 120 cos ( 5 η ) η 60 cos ( 6 η ) η 20 η + 18 sin ( η ) + 40 sin ( 2 η ) + 58 sin ( 3 η ) + 52 sin ( 4 η ) + 40 sin ( 5 η ) + 20 sin ( 6 η ) )
B 1 [ 31 ] = csc η 2 sec 3 η 2 960 η 2 ( 2 cos ( 2 η ) + 3 ) ( 4199 sin ( η ) η 2 + 8398 sin ( 2 η ) η 2 + 4199 sin ( 3 η ) η 2 + 648 cos ( η ) η + 516 cos ( 2 η ) η + 528 cos ( 3 η ) η + 612 cos ( 4 η ) η + 720 cos ( 5 η ) η + 360 cos ( 6 η ) η + 336 η 48 sin ( η ) 108 sin ( 2 η ) 192 sin ( 3 η ) 240 sin ( 4 η ) 240 sin ( 5 η ) 120 sin ( 6 η ) )
B 1 [ 33 ] = csc η 2 sec 3 η 2 480 η 2 ( 2 cos ( 2 η ) + 3 ) ( 4199 sin ( η ) η 2 + 8398 sin ( 2 η ) η 2 + 4199 sin ( 3 η ) η 2 624 cos ( η ) η 858 cos ( 2 η ) η 1140 cos ( 3 η ) η 918 cos ( 4 η ) η 720 cos ( 5 η ) η 540 cos ( 6 η ) η 360 cos ( 7 η ) η 180 cos ( 8 η ) η 240 η + 96 sin ( η ) + 174 sin ( 2 η ) + 240 sin ( 3 η ) + 234 sin ( 4 η ) + 216 sin ( 5 η ) + 180 sin ( 6 η ) + 120 sin ( 7 η ) + 60 sin ( 8 η ) )
B 1 [ 34 ] = csc 3 ( η ) sin 2 η 2 120 η 2 ( 2 cos ( 2 η ) + 3 ) ( 8398 sin ( η ) η 2 + 4199 sin ( 2 η ) η 2 384 cos ( η ) η 840 cos ( 2 η ) η 1344 cos ( 3 η ) η 1872 cos ( 4 η ) η 1440 cos ( 5 η ) η 960 cos ( 6 η ) η 480 cos ( 7 η ) η 120 η + 108 sin ( η ) + 240 sin ( 2 η ) + 348 sin ( 3 η ) + 432 sin ( 4 η ) + 360 sin ( 5 η ) + 240 sin ( 6 η ) + 120 sin ( 7 η ) )
B 1 [ 41 ] = csc η 2 sec 3 η 2 480 η 2 ( 2 cos ( 2 η ) + 3 ) ( 5207 sin ( η ) η 2 + 10414 sin ( 2 η ) η 2 + 5207 sin ( 3 η ) η 2 + 324 cos ( η ) η + 318 cos ( 2 η ) η + 324 cos ( 3 η ) η + 366 cos ( 4 η ) η + 420 cos ( 5 η ) η + 480 cos ( 6 η ) η + 240 cos ( 7 η ) η + 168 η 24 sin ( η ) 54 sin ( 2 η ) 96 sin ( 3 η ) 120 sin ( 4 η ) 120 sin ( 5 η ) 120 sin ( 6 η ) 60 sin ( 7 η ) )
B 1 [ 43 ] = csc η 2 sec 3 η 2 240 η 2 ( 2 cos ( 2 η ) + 3 ) ( 5207 sin ( η ) η 2 + 10414 sin ( 2 η ) η 2 + 5207 sin ( 3 η ) η 2 312 cos ( η ) η 429 cos ( 2 η ) η 570 cos ( 3 η ) η 729 cos ( 4 η ) η 600 cos ( 5 η ) η 480 cos ( 6 η ) η 360 cos ( 7 η ) η 240 cos ( 8 η ) η 120 cos ( 9 η ) η 120 η + 48 sin ( η ) + 87 sin ( 2 η ) + 120 sin ( 3 η ) + 147 sin ( 4 η ) + 138 sin ( 5 η ) + 120 sin ( 6 η ) + 90 sin ( 7 η ) + 60 sin ( 8 η ) + 30 sin ( 9 η ) )
B 1 [ 44 ] = csc 3 ( η ) sin 2 η 2 60 η 2 ( 2 cos ( 2 η ) + 3 ) ( 10414 sin ( η ) η 2 + 5207 sin ( 2 η ) η 2 192 cos ( η ) η 420 cos ( 2 η ) η 672 cos ( 3 η ) η 936 cos ( 4 η ) η 1200 cos ( 5 η ) η 900 cos ( 6 η ) η 600 cos ( 7 η ) η 300 cos ( 8 η ) η 60 η + 54 sin ( η ) + 120 sin ( 2 η ) + 174 sin ( 3 η ) + 216 sin ( 4 η ) + 240 sin ( 5 η ) + 180 sin ( 6 η ) + 120 sin ( 7 η ) + 60 sin ( 8 η ) )

Appendix A.6. Implicit Block Method Im5

B 1 [ 11 ] = csc ( η ) sec ( η ) 6048000 η 2 ( 2 cos ( 2 η ) + 2 cos ( 4 η ) + 2 cos ( 6 η ) + 1 ) ( 67635 sin ( η ) η 2 566214 sin ( 2 η ) η 2 513430 sin ( 3 η ) η 2 550909 sin ( 4 η ) η 2 487686 sin ( 5 η ) η 2 + 834016 sin ( 6 η ) η 2 + 1586825 sin ( 7 η ) η 2 + 834016 sin ( 8 η ) η 2 45090 sin ( 9 η ) η 2 + 3061 sin ( 10 η ) η 2 3386880 cos ( η ) η + 2177280 cos ( 2 η ) η 3628800 cos ( 3 η ) η + 2177280 cos ( 4 η ) η 3507840 cos ( 5 η ) η 302400 cos ( 6 η ) η 1572480 cos ( 7 η ) η + 1512000 cos ( 8 η ) η + 483840 η + 604800 sin ( 2 η ) 241920 sin ( 3 η ) + 423360 sin ( 4 η ) 362880 sin ( 5 η ) + 423360 sin ( 6 η ) 241920 sin ( 7 η ) + 604800 sin ( 8 η ) )
B 1 [ 13 ] = csc ( 2 η ) 504000 ( 10080 η 2 ( 116213 sin ( 3 η ) η 2 3024 + 55397 sin ( 4 η ) η 2 4032 167 224 sin ( 5 η ) η 2 + 3061 sin ( 6 η ) η 2 60480 12 cos ( η ) η 15 cos ( 2 η ) η 16 cos ( 3 η ) η + 30 cos ( 4 η ) η 7 η 2 sin ( η ) 3 sin ( 2 η ) 4 sin ( 3 η ) + 10 sin ( 4 η ) ) 138469 sin ( η ) )
B 1 [ 21 ] = csc ( η ) 1209600 η 2 ( 2 cos ( 2 η ) + 1 ) ( 2 cos ( 2 η ) + 2 cos ( 4 η ) + 2 cos ( 6 η ) + 1 ) ( 342725 sin ( η ) η 2 + 265590 sin ( 2 η ) η 2 + 189701 sin ( 3 η ) η 2 + 135716 sin ( 4 η ) η 2 + 225409 sin ( 5 η ) η 2 5842 sin ( 6 η ) η 2 514276 sin ( 7 η ) η 2 5842 sin ( 8 η ) η 2 + 8927 sin ( 9 η ) η 2 + 1330560 cos ( η ) η 120960 cos ( 2 η ) η + 1239840 cos ( 3 η ) η 241920 cos ( 4 η ) η + 937440 cos ( 5 η ) η + 604800 cos ( 6 η ) η + 483840 cos ( 7 η ) η 362880 cos ( 8 η ) η + 120960 cos ( 9 η ) η 362880 η 181440 sin ( 2 η ) + 90720 sin ( 3 η ) 120960 sin ( 4 η ) + 90720 sin ( 5 η ) 181440 sin ( 6 η ) 302400 sin ( 8 η ) )
B 1 [ 24 ] = csc ( 3 η ) 403200 ( 10080 η 2 ( 68545 sin ( 4 η ) η 2 2016 + 2951 336 sin ( 5 η ) η 2 8927 sin ( 6 η ) η 2 30240 12 cos ( η ) η 15 cos ( 2 η ) η 16 cos ( 3 η ) η + 20 cos ( 5 η ) η 7 η 2 sin ( η ) 3 sin ( 2 η ) 4 sin ( 3 η ) + 10 sin ( 5 η ) ) 129874 sin ( η ) 210405 sin ( 2 η ) )
B 1 [ 31 ] = csc ( η ) 2419200 η 2 ( 2 cos ( 2 η ) + 1 ) ( 2 cos ( 2 η ) + 2 cos ( 4 η ) + 2 cos ( 6 η ) + 1 ) ( 461465 sin ( η ) η 2 1544670 sin ( 2 η ) η 2 930137 sin ( 3 η ) η 2 1254932 sin ( 4 η ) η 2 45573 sin ( 5 η ) η 2 + 965194 sin ( 6 η ) η 2 + 826532 sin ( 7 η ) η 2 + 965194 sin ( 8 η ) η 2 + 221141 sin ( 9 η ) η 2 + 2177280 cos ( η ) η 3386880 cos ( 2 η ) η + 544320 cos ( 3 η ) η 3144960 cos ( 4 η ) η 1270080 cos ( 5 η ) η 2419200 cos ( 6 η ) η 362880 cos ( 7 η ) η 483840 cos ( 8 η ) η + 362880 cos ( 9 η ) η 1693440 η 241920 sin ( 2 η ) + 423360 sin ( 3 η ) 362880 sin ( 4 η ) + 423360 sin ( 5 η ) 241920 sin ( 6 η ) + 604800 sin ( 7 η ) + 604800 sin ( 9 η ) )
B 1 [ 34 ] = csc ( 3 η ) 806400 ( 20160 η 2 ( 92293 sin ( 4 η ) η 2 4032 + 5721 224 sin ( 5 η ) η 2 + 221141 sin ( 6 η ) η 2 60480 12 cos ( η ) η 15 cos ( 2 η ) η 16 cos ( 3 η ) η + 10 cos ( 6 η ) η 7 η 2 sin ( η ) 3 sin ( 2 η ) 4 sin ( 3 η ) + 10 sin ( 6 η ) ) 289738 sin ( η ) 324585 sin ( 2 η ) )
B 1 [ 41 ] = csc ( η ) 1209600 η 2 ( 2 cos ( 2 η ) + 1 ) ( 2 cos ( 2 η ) + 2 cos ( 4 η ) + 2 cos ( 6 η ) + 1 ) ( 538565 sin ( η ) η 2 163350 sin ( 2 η ) η 2 1718021 sin ( 3 η ) η 2 75236 sin ( 4 η ) η 2 + 122751 sin ( 5 η ) η 2 12878 sin ( 6 η ) η 2 + 1271396 sin ( 7 η ) η 2 12878 sin ( 8 η ) η 2 + 460193 sin ( 9 η ) η 2 1330560 cos ( η ) η + 725760 cos ( 2 η ) η 1239840 cos ( 3 η ) η 1572480 cos ( 4 η ) η 937440 cos ( 5 η ) η 1209600 cos ( 6 η ) η 483840 cos ( 7 η ) η 241920 cos ( 8 η ) η 120960 cos ( 9 η ) η + 362880 η 120960 sin ( 2 η ) 90720 sin ( 3 η ) + 120960 sin ( 4 η ) 90720 sin ( 5 η ) + 181440 sin ( 6 η ) + 302400 sin ( 8 η ) + 302400 sin ( 10 η ) )
B 1 [ 44 ] = csc ( 3 η ) 403200 ( 88114 sin ( η ) 335205 sin ( 2 η ) 10080 η 2 ( 107713 sin ( 4 η ) η 2 2016 + 605 112 sin ( 5 η ) η 2 + 460193 sin ( 6 η ) η 2 30240 12 cos ( η ) η 15 cos ( 2 η ) η 16 cos ( 3 η ) η 7 η 2 sin ( η ) 3 sin ( 2 η ) 4 sin ( 3 η ) + 10 sin ( 7 η ) ) )
B 2 [ 14 ] = csc ( 7 η ) 3024000 η 2 ( 138469 sin ( η ) η 2 + 581065 sin ( 3 η ) η 2 + 553970 sin ( 4 η ) η 2 67635 sin ( 5 η ) η 2 + 12244 sin ( 6 η ) η 2 + 120960 cos ( η ) η 241920 cos ( 3 η ) η + 1209600 cos ( 4 η ) η + 120960 η + 120960 sin ( η ) + 181440 sin ( 2 η ) + 241920 sin ( 3 η ) 604800 sin ( 4 η ) )
B 2 [ 24 ] = csc ( 7 η ) 1209600 η 2 ( 129874 sin ( η ) η 2 + 126243 sin ( 2 η ) η 2 342725 sin ( 4 η ) η 2 265590 sin ( 5 η ) η 2 + 26781 sin ( 6 η ) η 2 120960 cos ( η ) η 90720 cos ( 2 η ) η 604800 cos ( 5 η ) η 90720 η 60480 sin ( η ) 90720 sin ( 2 η ) 120960 sin ( 3 η ) + 302400 sin ( 5 η ) )
B 2 [ 34 ] = csc ( 7 η ) 2419200 η 2 ( 289738 sin ( η ) η 2 194751 sin ( 2 η ) η 2 + 461465 sin ( 4 η ) η 2 + 1544670 sin ( 5 η ) η 2 + 663423 sin ( 6 η ) η 2 + 241920 cos ( η ) η + 181440 cos ( 2 η ) η + 1814400 cos ( 6 η ) η + 181440 η + 120960 sin ( η ) + 181440 sin ( 2 η ) + 241920 sin ( 3 η ) 604800 sin ( 6 η ) )
B 2 [ 44 ] = csc ( 7 η ) 1209600 η 2 ( 88114 sin ( η ) η 2 201123 sin ( 2 η ) η 2 + 538565 sin ( 4 η ) η 2 + 163350 sin ( 5 η ) η 2 + 1380579 sin ( 6 η ) η 2 + 120960 cos ( η ) η + 90720 cos ( 2 η ) η + 1209600 cos ( 7 η ) η + 90720 η + 60480 sin ( η ) + 90720 sin ( 2 η ) + 120960 sin ( 3 η ) 302400 sin ( 7 η ) )

Appendix A.7. Explicit Block Method E5

B 1 [ 11 ] = 1 120 ( sin ( 2 η ) + sin ( 4 η ) ) ( 199 ( sin ( η ) sin ( 3 η ) ) 12 η 2 ( 4 η + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 4 η ) + η ( 14 cos ( η ) 3 cos ( 2 η ) + 2 cos ( 3 η ) + 11 cos ( 4 η ) ) ) )
B 1 [ 13 ] = csc ( η ) sec ( η ) 120 η 2 ( 199 sin ( η ) η 2 + 24 cos ( η ) η + 18 cos ( 2 η ) η + 60 cos ( 4 η ) η + 18 η + 12 sin ( η ) + 18 sin ( 2 η ) + 24 sin ( 3 η ) 60 sin ( 4 η ) )
B 1 [ 14 ] = csc ( η ) 120 η 2 ( 2 cos ( 2 η ) + 1 ) ( 199 sin ( η ) η 2 + 24 cos ( η ) η 48 cos ( 3 η ) η + 240 cos ( 4 η ) η + 24 η + 24 sin ( η ) + 36 sin ( 2 η ) + 48 sin ( 3 η ) 120 sin ( 4 η ) )
B 1 [ 21 ] = csc ( η ) sec ( η ) 40 η 2 ( 2 cos ( 2 η ) + 1 ) ( 209 sin ( η ) η 2 + 209 sin ( 3 η ) η 2 + 8 cos ( η ) η + 14 cos ( 2 η ) η 16 cos ( 3 η ) η + 2 cos ( 4 η ) η + 40 cos ( 5 η ) η + 12 η + 4 sin ( η ) + 6 sin ( 2 η ) + 8 sin ( 3 η ) 20 sin ( 5 η ) )
B 1 [ 23 ] = csc ( 2 η ) 10 η 2 ( 209 sin ( η ) η 2 + 4 cos ( η ) η + 3 cos ( 2 η ) η + 20 cos ( 5 η ) η + 3 η + 2 sin ( η ) + 3 sin ( 2 η ) + 4 sin ( 3 η ) 10 sin ( 5 η ) )
B 1 [ 24 ] = csc ( 3 η ) 20 η 2 ( 209 sin ( η ) η 2 + 4 cos ( η ) η 8 cos ( 3 η ) η + 60 cos ( 5 η ) η + 4 η + 4 sin ( η ) + 6 sin ( 2 η ) + 8 sin ( 3 η ) 20 sin ( 5 η ) )
B 1 [ 31 ] = csc ( η ) sec ( η ) 240 η 2 ( 2 cos ( 2 η ) + 1 ) ( 4199 sin ( η ) η 2 + 4199 sin ( 3 η ) η 2 + 168 cos ( η ) η 36 cos ( 2 η ) η + 24 cos ( 3 η ) η 108 cos ( 4 η ) η + 360 cos ( 6 η ) η + 72 η + 24 sin ( η ) + 36 sin ( 2 η ) + 48 sin ( 3 η ) 120 sin ( 6 η ) )
B 1 [ 33 ] = csc ( 2 η ) 60 η 2 ( 4199 sin ( η ) η 2 + 24 cos ( η ) η + 18 cos ( 2 η ) η + 180 cos ( 6 η ) η + 18 η + 12 sin ( η ) + 18 sin ( 2 η ) + 24 sin ( 3 η ) 60 sin ( 6 η ) )
B 1 [ 34 ] = csc ( 3 η ) 120 η 2 ( 4199 sin ( η ) η 2 + 24 cos ( η ) η 48 cos ( 3 η ) η + 480 cos ( 6 η ) η + 24 η + 24 sin ( η ) + 36 sin ( 2 η ) + 48 sin ( 3 η ) 120 sin ( 6 η ) )
B 1 [ 41 ] = csc ( η ) sec ( η ) 120 η 2 ( 2 cos ( 2 η ) + 1 ) ( 5207 sin ( η ) η 2 + 5207 sin ( 3 η ) η 2 + 84 cos ( η ) η + 42 cos ( 2 η ) η 48 cos ( 3 η ) η + 6 cos ( 4 η ) η 60 cos ( 5 η ) η + 240 cos ( 7 η ) η + 36 η + 12 sin ( η ) + 18 sin ( 2 η ) + 24 sin ( 3 η ) 60 sin ( 7 η ) )
B 1 [ 43 ] = csc ( 2 η ) 30 η 2 ( 5207 sin ( η ) η 2 + 12 cos ( η ) η + 9 cos ( 2 η ) η + 120 cos ( 7 η ) η + 9 η + 6 sin ( η ) + 9 sin ( 2 η ) + 12 sin ( 3 η ) 30 sin ( 7 η ) )
B 1 [ 44 ] = csc ( 3 η ) 60 η 2 ( 5207 sin ( η ) η 2 + 12 cos ( η ) η 24 cos ( 3 η ) η + 300 cos ( 7 η ) η + 12 η + 12 sin ( η ) + 18 sin ( 2 η ) + 24 sin ( 3 η ) 60 sin ( 7 η ) )

References

  1. Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
  2. Ixaru, L.G.; Berghe, G.V.; DeMeyer, H. Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 2002, 140, 423–434. [Google Scholar] [CrossRef]
  3. Lee, K.C.; Senu, N.; Ahmadian, A.; Ibrahim, S.N.I. High-order exponentially fitted and trigonometrically fitted explicit two-derivative Runge–Kutta-type methods for solving third-order oscillatory problems. Math. Sci. 2022, 16, 281–297. [Google Scholar] [CrossRef]
  4. Ramos, H.; Vigo-Aguiar, J. On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 2010, 23, 1378–1381. [Google Scholar] [CrossRef]
  5. Raptis, A.; Allison, A. Exponential-fitting methods for the numerical solution of the schrodinger equation. Comput. Phys. Commun. 1978, 14, 1–5. [Google Scholar] [CrossRef]
  6. Senu, N.; Lee, K.; WanIsmail, W.; Ahmadian, A.; Ibrahim, S.; Laham, M. Improved Runge-Kutta method with trigonometrically-fitting technique for solving oscillatory problem. Malays. J. Math. Sci. 2021, 15, 253–266. [Google Scholar]
  7. Simos, T.E. A new methodology for the development of efficient multistep methods for first-order IVPs with oscillating solutions. Mathematics 2024, 12, 504. [Google Scholar] [CrossRef]
  8. Thomas, R.; Simos, T. A family of hybrid exponentially fitted predictor-corrector methods for the numerical integration of the radial Schrödinger equation. J. Comput. Appl. Math. 1997, 87, 215–226. [Google Scholar] [CrossRef]
  9. Van de Vyver, H. A symplectic exponentially fitted modified Runge–Kutta–Nyström method for the numerical integration of orbital problems. New Astron. 2005, 10, 261–269. [Google Scholar] [CrossRef]
  10. Zhai, W.; Fu, S.; Zhou, T.; Xiu, C. Exponentially-fitted and trigonometrically-fitted implicit RKN methods for solving y”= f (t, y). J. Appl. Math. Comput. 2022, 68, 1449–1466. [Google Scholar] [CrossRef]
  11. Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods; Wiley-Interscience: Hoboken, NJ, USA, 1987. [Google Scholar]
  12. Hairer, E.; Wanner, G. Convergence for nonlinear problems. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems; Springer: Berlin/Heidelberg, Germany, 1996; pp. 339–355. [Google Scholar]
  13. Birta, A.-B. Parallel block predictor-corrector methods for ODE’s. IEEE Trans. Comput. 1987, C-36, 299–311. [Google Scholar] [CrossRef]
  14. Chu, M.T.; Hamilton, H. Parallel solution of ODE’s by multiblock methods. SIAM J. Sci. Stat. Comput. 1987, 8, 342–353. [Google Scholar] [CrossRef]
  15. Shampine, L.F.; Watts, H. Block implicit one-step methods. Math. Comput. 1969, 23, 731–740. [Google Scholar] [CrossRef]
  16. Tam, H.W. Parallel Methods for the Numerical Solution of Ordinary Differential Equations; University of Illinois at Urbana-Champaign: Chicago, IL, USA, 1989. [Google Scholar]
  17. Gragg, W.B.; Stetter, H.J. Generalized multistep Predictor-Corrector methods. J. ACM (JACM) 1964, 11, 188–209. [Google Scholar] [CrossRef]
  18. Milne, W.E. Numerical solution of differential equations. Bull. Am. Math. Soc. 1953, 59, 577–579. [Google Scholar] [CrossRef]
  19. Kaur, A.; Kanwar, V.; Ramos, H. A coupled scheme based on uniform algebraic trigonometric tension B-spline and a hybrid block method for Camassa-Holm and Degasperis-Procesi equations. Comput. Appl. Math. 2024, 43, 16. [Google Scholar] [CrossRef]
  20. Fatunla, S.O. Numerical Methods for Initial Value Problems in Ordinary Differential Equations; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
  21. Fatunla, S.O. Block methods for second order ODEs. Int. J. Comput. Math. 1991, 41, 55–63. [Google Scholar] [CrossRef]
  22. Lambert, J.D. Computational Methods in Ordinary Differential Equations; Wiley: Hoboken, NJ, USA, 1973. [Google Scholar]
  23. Chollom, J.; Ndam, J.; Kumleng, G. On some properties of the block linear multi-step methods. Sci. World J. 2007, 2, 11–17. [Google Scholar] [CrossRef]
  24. Singh, G.; Garg, A.; Kanwar, V.; Ramos, H. An efficient optimized adaptive step-size hybrid block method for integrating differential systems. Appl. Math. Comput. 2019, 362, 124567. [Google Scholar] [CrossRef]
  25. Cash, J.R.; Karp, A.H. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 1990, 16, 201–222. [Google Scholar] [CrossRef]
  26. Fehlberg, E. Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control; National Aeronautics and Space Administration: Washington, DC, USA, 1968.
  27. Stiefel, E.; Bettis, D. Stabilization of Cowell’s method. Numer. Math. 1969, 13, 154–175. [Google Scholar] [CrossRef]
  28. Franco, J.; Gómez, I.; Rández, L. Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order. Numer. Algorithms 2001, 26, 347–363. [Google Scholar] [CrossRef]
  29. Franco, J.; Palacios, M. High-order P-stable multistep methods. J. Comput. Appl. Math. 1990, 30, 1–10. [Google Scholar] [CrossRef]
  30. Simos, T. New open modified Newton Cotes type formulae as multilayer symplectic integrators. Appl. Math. Model. 2013, 37, 1983–1991. [Google Scholar] [CrossRef]
  31. Petzold, L.R. An efficient numerical method for highly oscillatory ordinary differential equations. SIAM J. Numer. Anal. 1981, 18, 455–479. [Google Scholar] [CrossRef]
Figure 1. Region of stability for E 1 (explicit method).
Figure 1. Region of stability for E 1 (explicit method).
Mathematics 13 03151 g001
Figure 2. Region of stability for I m 1 (implicit method).
Figure 2. Region of stability for I m 1 (implicit method).
Mathematics 13 03151 g002
Figure 3. Region of stability for E 2 (AF = 0), with η = 1 .
Figure 3. Region of stability for E 2 (AF = 0), with η = 1 .
Mathematics 13 03151 g003
Figure 4. Region of stability for E 2 (AF = 0), with η = 50 .
Figure 4. Region of stability for E 2 (AF = 0), with η = 50 .
Mathematics 13 03151 g004
Figure 5. Region of stability for E 2 (AF = 0), with η = 1000 .
Figure 5. Region of stability for E 2 (AF = 0), with η = 1000 .
Mathematics 13 03151 g005
Figure 6. Region of stability for E 3 (AF = 0, PhEr = 0), with η = 1 .
Figure 6. Region of stability for E 3 (AF = 0, PhEr = 0), with η = 1 .
Mathematics 13 03151 g006
Figure 7. Region of stability for E 3 (AF = 0, PhEr = 0), with η = 50 .
Figure 7. Region of stability for E 3 (AF = 0, PhEr = 0), with η = 50 .
Mathematics 13 03151 g007
Figure 8. Region of stability for E 3 (AF = 0, PhEr = 0), with η = 1000 .
Figure 8. Region of stability for E 3 (AF = 0, PhEr = 0), with η = 1000 .
Mathematics 13 03151 g008
Figure 9. Region of stability for E 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1 .
Figure 9. Region of stability for E 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1 .
Mathematics 13 03151 g009
Figure 10. Region of stability for E 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 50 .
Figure 10. Region of stability for E 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 50 .
Mathematics 13 03151 g010
Figure 11. Region of stability for E 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1000 .
Figure 11. Region of stability for E 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1000 .
Mathematics 13 03151 g011
Figure 12. Region of stability for E 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1 .
Figure 12. Region of stability for E 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1 .
Mathematics 13 03151 g012
Figure 13. Region of stability for E 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 50 .
Figure 13. Region of stability for E 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 50 .
Mathematics 13 03151 g013
Figure 14. Region of stability for E 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1000 .
Figure 14. Region of stability for E 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1000 .
Mathematics 13 03151 g014
Figure 15. Region of stability for I m 2 (AF = 0), with η = 1 .
Figure 15. Region of stability for I m 2 (AF = 0), with η = 1 .
Mathematics 13 03151 g015
Figure 16. Region of stability for I m 2 (AF = 0), with η = 50 .
Figure 16. Region of stability for I m 2 (AF = 0), with η = 50 .
Mathematics 13 03151 g016
Figure 17. Region of stability for I m 2 (AF = 0), with η = 1000 .
Figure 17. Region of stability for I m 2 (AF = 0), with η = 1000 .
Mathematics 13 03151 g017
Figure 18. Region of stability for I m 3 (AF = 0, PhEr = 0), with η = 1 .
Figure 18. Region of stability for I m 3 (AF = 0, PhEr = 0), with η = 1 .
Mathematics 13 03151 g018
Figure 19. Region of stability for I m 3 (AF = 0, PhEr = 0), with η = 50 .
Figure 19. Region of stability for I m 3 (AF = 0, PhEr = 0), with η = 50 .
Mathematics 13 03151 g019
Figure 20. Region of stability for I m 3 (AF = 0, PhEr = 0), with η = 1000 .
Figure 20. Region of stability for I m 3 (AF = 0, PhEr = 0), with η = 1000 .
Mathematics 13 03151 g020
Figure 21. Region of stability for I m 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1 .
Figure 21. Region of stability for I m 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1 .
Mathematics 13 03151 g021
Figure 22. Region of stability for I m 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 50 .
Figure 22. Region of stability for I m 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 50 .
Mathematics 13 03151 g022
Figure 23. Region of stability for I m 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1000 .
Figure 23. Region of stability for I m 4 (AF = 0, PhEr = 0, D[PhEr] = 0), with η = 1000 .
Mathematics 13 03151 g023
Figure 24. Region of stability for I m 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1 .
Figure 24. Region of stability for I m 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1 .
Mathematics 13 03151 g024
Figure 25. Region of stability for I m 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 50 .
Figure 25. Region of stability for I m 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 50 .
Mathematics 13 03151 g025
Figure 26. Region of stability for I m 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1000 .
Figure 26. Region of stability for I m 5 (AF = 0, PhEr = 0, D[AF] = 0), with η = 1000 .
Mathematics 13 03151 g026
Figure 27. Error comparison for Example 1.
Figure 27. Error comparison for Example 1.
Mathematics 13 03151 g027
Figure 28. Error comparison for Example 2.
Figure 28. Error comparison for Example 2.
Mathematics 13 03151 g028
Figure 29. Error comparison for Example 3.
Figure 29. Error comparison for Example 3.
Mathematics 13 03151 g029
Figure 30. Error comparison for Example 4.
Figure 30. Error comparison for Example 4.
Mathematics 13 03151 g030
Figure 31. Error comparison for Example 5.
Figure 31. Error comparison for Example 5.
Mathematics 13 03151 g031
Figure 32. Error comparison for Example 6.
Figure 32. Error comparison for Example 6.
Mathematics 13 03151 g032
Figure 33. Error comparison for Example 7.
Figure 33. Error comparison for Example 7.
Mathematics 13 03151 g033
Figure 34. Error comparison for Example 8.
Figure 34. Error comparison for Example 8.
Mathematics 13 03151 g034
Table 1. Outline of key properties.
Table 1. Outline of key properties.
MethodOrderAFPhErVanished First-Order
Derivative of AF
Vanished First-Order
Derivative of PhEr
I m 1 888××
I m 2 4012××
I m 3 800××
I m 4 800×
I m 5 800×
E 1 444××
E 2 206××
E 3 400××
E 4 400×
E 5 400×
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alharthi, N.H.; Kaur, A.; Simos, T.E.; Alqahtani, R.T. The Implicit Phase-Fitted and Amplification-Fitted Four-Point Block Methods for Oscillatory First-Order Problems. Mathematics 2025, 13, 3151. https://doi.org/10.3390/math13193151

AMA Style

Alharthi NH, Kaur A, Simos TE, Alqahtani RT. The Implicit Phase-Fitted and Amplification-Fitted Four-Point Block Methods for Oscillatory First-Order Problems. Mathematics. 2025; 13(19):3151. https://doi.org/10.3390/math13193151

Chicago/Turabian Style

Alharthi, Nadiyah Hussain, Anurag Kaur, Theodore E. Simos, and Rubayyi T. Alqahtani. 2025. "The Implicit Phase-Fitted and Amplification-Fitted Four-Point Block Methods for Oscillatory First-Order Problems" Mathematics 13, no. 19: 3151. https://doi.org/10.3390/math13193151

APA Style

Alharthi, N. H., Kaur, A., Simos, T. E., & Alqahtani, R. T. (2025). The Implicit Phase-Fitted and Amplification-Fitted Four-Point Block Methods for Oscillatory First-Order Problems. Mathematics, 13(19), 3151. https://doi.org/10.3390/math13193151

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop