One Model for Many Fakes: Detecting GAN and Diffusion-Generated Forgeries in Faces, Invoices, and Medical Heterogeneous Data
Abstract
1. Introduction
1.1. AI Forgery Methods to Improve Readability
1.2. Research Gap and Contributions
- We propose a single, unified deep learning model capable of identifying forgeries across three highly diverse domains—financial invoices, medical CT scans, and human faces—eliminating the need for domain-specific models.
- We introduce a new composite dataset for cross-domain forgery detection. This dataset combines publicly available images with a novel set of realistic, fake invoices generated using a state-of-the-art text-to-image model (GPT-4), providing a valuable resource for future research.
- We demonstrate that a patch-based approach can learn generalizable, domain-invariant features, proving effective for detecting manipulations in structurally distinct image types (documents, medical scans, and natural images).
- We provide an extensive comparative analysis, showing that our proposed model outperforms standard CNN-based pretrained models, establishing a new benchmark for cross-domain forgery detection.
2. Literature Review
3. Materials and Methods
3.1. Dataset Description
3.2. Dataset Preprocessing
- Resolution Normalization: The complete dataset of this study was resized to a 224 × 224 fixed resolutions. The images were resized to this size due to the standard size of available Convolutional Neural Network (CNN) based pretrained models, such as MobileNetV2 [51] and VGG16 [52]. These resizing steps help reduce memory usage slightly during training and inference.
- Pixel Value Scaling: The pixel values were normalized with a range [0, 1] for the stable gradient updates and faster convergence during the model training.
- Removed Images: We have also removed images that ChatGPT does not properly generate (some text-like items’ descriptions are misprinted).
- Conversion to 3-Channels: To make the dataset consistent and apply pretrained weights, the dataset was converted to 3-Channels.
3.3. Dataset Average Intensity Histogram Analysis
3.4. PCA-Based Latent Space Analysis
3.5. Proposed Model and Hyperparameters
4. Results and Discussion
4.1. Evaluation Metrics
- Accuracy: The overall model’s correctness prediction is assessed by the accuracy. It is calculated by dividing the total number of correct predictions by the total number of samples, as shown in Equation (4). Although it is a fundamental evaluation metric, it is insufficient in some cases, especially when the dataset is imbalanced.
- Precision: Precision (P) is a performance metric that measures the proportion of correctly predicted positive instances among all instances predicted as positive. It is calculated as the ratio of true positives (TP) to the sum of true positives (TP) and false positives (FP), as shown in Equation (5).
- Recall (Sensitivity): Recall (R) is a metric that measures the proportion of the actual positive instances that the model correctly identified. It is also known as Sensitivity or True Positive Rate (TPR). A high recall means that the model successfully identifies most of the true positives, which is critical in scenarios where missing a positive instance carries a significant cost, such as in disease detection. It is calculated as the ratio of true positives (TP) to the sum of true positives (TP) and false negatives (FN), as shown in Equation (6).
- F1-Score: F1 score is the harmonic mean of precision and recall, see Equation (7). It is beneficial in cases of imbalanced datasets, where relying solely on accuracy, precision, or recall might give a misleading picture of model performance.
4.2. Experimental Setup
4.3. Experimental Results
4.4. Comparsion with State of the Art CNN Based Pretrained Models
4.5. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rashid, A.B.; Kausik, M.A.K. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Adv. 2024, 7, 100277. [Google Scholar] [CrossRef]
- Friedrichs, N. Trusted Criminals. 2009. Available online: https://www.justicediwan.org/userfiles/David%20O_%20Friedrichs-Trusted%20Criminals_%20White%20Collar%20Crime%20in%20Contemporary%20Society%20%20-Wadsworth%20Pub%20Co%20(1995)(1).pdf (accessed on 10 April 2025).
- Abbas, F.; Taeihagh, A. Unmasking deepfakes: A systematic review of deepfake detection and generation techniques using artificial intelligence. Expert Syst. Appl. 2024, 252, 124260. [Google Scholar] [CrossRef]
- Radiation Risk from Medical Imaging—Harvard Health. Available online: https://www.health.harvard.edu/cancer/radiation-risk-from-medical-imaging (accessed on 28 April 2024).
- Solaiyappan, S.; Wen, Y. Machine learning based medical image deepfake detection: A comparative study. Mach. Learn. Appl. 2022, 8, 100298. [Google Scholar] [CrossRef]
- Vecchietti, G.; Liyanaarachchi, G.; Viglia, G. Managing deepfakes with artificial intelligence: Introducing the business privacy calculus. J. Bus. Res. 2025, 186, 115010. [Google Scholar] [CrossRef]
- The Worst Invoice Fraud Cases. Available online: https://xelix.com/the-worst-invoice-fraud-cases-in-2019-2020/ (accessed on 11 April 2025).
- Ex-Employee Jailed After Defrauding National Trust Out of More Than £1 Million | The Crown Prosecution Service. Available online: https://www.cps.gov.uk/cps/news/ex-employee-jailed-after-defrauding-national-trust-out-more-ps1-million?utm_source=chatgpt.com (accessed on 18 September 2025).
- ECJ: VAT Liability of Employee Issuing Fake Invoices in the Name of Employer/Tax & Legal—The Blog on Current Developments and Relevant Innovations/PwC Deutschland. Available online: https://blogs.pwc.de/en/german-tax-and-legal-news/article/241681/ecj-vat-liability-of-employee-issuing-fake-invoices-in-the-name-of-employer/ (accessed on 18 September 2025).
- City of Fort Lauderdale Falls Victim to Phishing Scam Losing $1.2 Million—NBC 6 South Florida. Available online: https://www.nbcmiami.com/news/local/city-of-fort-lauderdale-falls-victim-to-phishing-scam-losing-1-2-million/3117167/ (accessed on 18 September 2025).
- Zanardelli, M.; Guerrini, F.; Leonardi, R.; Adami, N. Image forgery detection: A survey of recent deep-learning approaches. Multimed. Tools Appl. 2022, 82, 17521–17566. [Google Scholar] [CrossRef]
- Shinde, V.; Dhanawat, V.; Almogren, A.; Biswas, A.; Bilal, M.; Naqvi, R.A.; Rehman, A.U. Copy-Move Forgery Detection Technique Using Graph Convolutional Networks Feature Extraction. IEEE Access 2024, 12, 121675–121687. [Google Scholar] [CrossRef]
- Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Serra, G. A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 2011, 6, 1099–1110. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, B.; Bi, X.; Xiao, B.; Li, W.; Wang, G.; Gao, X. D-Net: A dual-encoder network for image splicing forgery detection and localization. Pattern Recognit. 2024, 155, 110727. [Google Scholar] [CrossRef]
- Li, Y.; Hu, L.; Dong, L.; Wu, H.; Tian, J.; Zhou, J.; Li, X. Transformer-Based Image Inpainting Detection via Label Decoupling and Constrained Adversarial Training. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 1857–1872. [Google Scholar] [CrossRef]
- Rosberg, F.; Aksoy, E.E.; Alonso-Fernandez, F.; Englund, C. FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2023. [Google Scholar]
- Fijačko, N.; Štiglic, G.; Topaz, M.; Greif, R. Using OpenAI’s Text-to-video Model Sora to Generate Cardiopulmonary Resuscitation Content. Resuscitation 2025, 207, 110484. [Google Scholar] [CrossRef]
- Temsah, M.-H.; Nazer, R.; Altamimi, I.; Aldekhyyel, R.; Jamal, A.; Almansour, M.; Aljamaan, F.; Alhasan, K.; Temsah, A.A.; Al-Eyadhy, A.; et al. OpenAI’s Sora and Google’s Veo 2 in Action: A Narrative Review of Artificial Intelligence-driven Video Generation Models Transforming Healthcare. Cureus 2025, 17, e77593. [Google Scholar] [CrossRef]
- Alanazi, S.; Asif, S. Understanding Deepfakes: A Comprehensive Analysis of Creation, Generation, and Detection. Artif. Intell. Soc. Comput. 2023, 72. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. proceedings.neurips.cc. Available online: https://proceedings.neurips.cc/paper_files/paper/2014/file/f033ed80deb0234979a61f95710dbe25-Paper.pdf (accessed on 11 July 2023).
- Sharma, P.; Kumar, M.; Sharma, H.K.; Biju, S.M. Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications. Multimed. Tools Appl. 2024, 83, 88811–88858. [Google Scholar] [CrossRef]
- Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; Ommer, B. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 10674–10685. [Google Scholar] [CrossRef]
- Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-Shot Text-to-Image Generation. Proc. Mach. Learn. Res. 2021, 139, 8821–8831. [Google Scholar]
- Introducing 4o Image Generation | OpenAI. Available online: https://openai.com/index/introducing-4o-image-generation/ (accessed on 25 July 2025).
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Rana, M.S.; Nobi, M.N.; Murali, B.; Sung, A.H. Deepfake Detection: A Systematic Literature Review. IEEE Access 2022, 10, 25494–25513. [Google Scholar] [CrossRef]
- Amiri, E.; Mosallanejad, A.; Sheikhahmadi, A. The Optimal Model for Copy-Move Forgery Detection in Medical Images. J. Med. Signals Sens. 2024, 14, 5. [Google Scholar] [CrossRef]
- High Resolution Images Create a Pseudo-Pulmonary Embolism (PE) Type Appearance-Chest Case Studies-CTisus CT Scanning. Available online: https://www.ctisus.com/teachingfiles/cases/chest/285194 (accessed on 10 August 2024).
- Albahli, S.; Nawaz, M. MedNet: Medical deepfakes detection using an improved deep learning approach. Multimed. Tools Appl. 2024, 83, 48357–48375. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. Proc. Mach. Learn. Res. 2021, 139, 10096–10106. [Google Scholar]
- Akhtar, Z.; Dasgupta, D. A Comparative Evaluation of Local Feature Descriptors for Deepfakes Detection. ieeexplore.ieee.org. 2019. Available online: https://ieeexplore.ieee.org/abstract/document/9033005/ (accessed on 11 July 2023).
- Sharafudeen, M.; Vinod Chandra, S.S. Medical Deepfake Detection using 3-Dimensional Neural Learning. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Swizerland, 2023; Volume 13739, pp. 169–180. [Google Scholar] [CrossRef]
- Budhiraja, R.; Kumar, M.; Das, M.K.; Bafila, A.S.; Singh, S. MeDiFakeD: Medical Deepfake Detection using Convolutional Reservoir Networks. In Proceedings of the 2022 IEEE Global Conference on Computing, Power and Communication Technologies, GlobConPT 2022, New Delhi, India, 23–25 September 2022. [Google Scholar] [CrossRef]
- Sharafudeen, M.; Chandra SS, V. Leveraging Vision Attention Transformers for Detection of Artificially Synthesized Dermoscopic Lesion Deepfakes Using Derm-CGAN. Diagnostics 2023, 13, 825. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Liu, Y.; Han, Y.; Xiang, Z. GAN-based medical image small region forgery detection via a two-stage cascade framework. PLoS ONE 2024, 19, e0290303. [Google Scholar] [CrossRef]
- Arshed, M.A.; Mumtaz, S.; Gherghina, Ș.C.; Urooj, N.; Ahmed, S.; Dewi, C. A Deep Learning Model for Detecting Fake Medical Images to Mitigate Financial Insurance Fraud. Computation 2024, 12, 173. [Google Scholar] [CrossRef]
- Bekci, B.; Akhtar, Z.; Ekenel, H.K. Cross-Dataset Face Manipulation Detection. In Proceedings of the 2020 28th Signal Processing and Communications Applications Conference, SIU 2020-Proceedings, Gaziantep, Turkey, 5–7 October 2020. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3204–3213. [Google Scholar] [CrossRef]
- Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. FaceForensics++: Learning to Detect Manipulated Facial Images. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Korshunov, P.; Marcel, S. DeepfakeTIMIT. Available online: https://www.idiap.ch/en/scientific-research/data/deepfaketimit (accessed on 22 September 2025).
- Eyebrow Recognition for Identifying Deepfake Videos | IEEE Conference Publication | IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9211068/authors#authors (accessed on 12 July 2023).
- GitHub-LeeDongYeun/Deepfake-Detection. Available online: https://github.com/LeeDongYeun/deepfake-detection (accessed on 27 May 2025).
- Silva, S.H.; Bethany, M.; Votto, A.M.; Scarff, I.H.; Beebe, N.; Najafirad, P. Deepfake forensics analysis: An explainable hierarchical ensemble of weakly supervised models. Forensic Sci. Int. 2022, 4, 100217. [Google Scholar] [CrossRef]
- High-Quality Invoice Images for OCR. Available online: https://www.kaggle.com/datasets/osamahosamabdellatif/high-quality-invoice-images-for-ocr?resource=download (accessed on 28 June 2025).
- DALL·E 3 | OpenAI. Available online: https://openai.com/index/dall-e-3/ (accessed on 13 June 2025).
- 140k Real and Fake Faces | Kaggle. Available online: https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces (accessed on 12 July 2023).
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 43, 4217–4228. [Google Scholar] [CrossRef]
- BTD-MRI and CT Deepfake Test Sets. Available online: https://www.kaggle.com/datasets/freddiegraboski/btd-mri-and-ct-deepfake-test-sets (accessed on 25 July 2025).
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the Proceedings-30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Rafique, R.; Gantassi, R.; Amin, R.; Frnda, J.; Mustapha, A.; Alshehri, A.H. Deep fake detection and classification using error-level analysis and deep learning. Sci. Rep. 2023, 13, 7422. [Google Scholar] [CrossRef]
- Pareek, J.; Jacob, J. Data Compression and Visualization Using PCA and T-SNE; Springer: Berlin/Heidelberg, Germany, 2021; Volume 135, pp. 327–337. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the ICLR 2021-9th International Conference on Learning Representations, Vienna, Austria, 4 May 2021. [Google Scholar]
- Arshed, M.A.; Alwadain, A.; Ali, R.F.; Mumtaz, S.; Ibrahim, M.; Muneer, A. Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network. Mathematics 2023, 11, 3710. [Google Scholar] [CrossRef]
- Prusty, S.; Patnaik, S.; Dash, S.K. SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer. Front. Nanotechnol. 2022, 4, 972421. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Valero-Carreras, D.; Alcaraz, J.; Landete, M. Comparing two SVM models through different metrics based on the confusion matrix. Comput. Oper. Res. 2023, 152, 106131. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santiago, Chile, 7–13 December 2015; pp. 770–778. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 10691–10700. [Google Scholar]
Hyperparameter | Value |
---|---|
Input Image Size | 224 × 224 |
Patch Size | 16 × 16 |
Number of Patches | 196 |
Embedding Dimension | 768 |
[CLS] Token | Added (Prepended) |
Positional Encoding | Learnable (197 × 768) |
Number of Transformer Layers | 12 |
Number of Attention Heads | 12 |
FFN Hidden Size | 768 × 6 = 4608 |
Dropout Rate | 0.3 |
Training Hyperparameters | Value |
---|---|
Batch Size | 32 |
Epochs | 20 |
StratifiedKFold | 3 |
Optimizer | Adam |
Learning Rate | 1 × 10−5 |
Training Accuracy | Validation Accuracy | Test Accuracy | Weighted Precision | Weighted Recall | Weighted F1 | |
---|---|---|---|---|---|---|
Fold 1 | 0.9980 | 0.9647 | 0.9609 | 0.9612 | 0.9609 | 0.9609 |
Fold 2 | 0.9990 | 0.9529 | 0.9609 | 0.9617 | 0.9609 | 0.9609 |
Fold 3 | 0.9980 | 0.9686 | 0.9608 | 0.9615 | 0.9608 | 0.9607 |
Average | 0.9983 | 0.9620 | 0.9608 | 0.9614 | 0.9608 | 0.9608 |
Precision | Recall | F1 | Support | |
---|---|---|---|---|
Fake-Face | 0.8723 | 0.9111 | 0.8913 | 45 |
Fake-Invoice | 1.0000 | 1.0000 | 1.0000 | 44 |
Fake-Medical | 1.0000 | 1.0000 | 1.0000 | 44 |
Real-Face | 0.9070 | 0.8667 | 0.8864 | 45 |
Real-Invoice | 1.0000 | 1.0000 | 1.0000 | 44 |
Real-Medical | 1.0000 | 1.0000 | 1.0000 | 33 |
Accuracy | 0.9609 | 256 | ||
macro avg | 0.9632 | 0.9630 | 0.9629 | 256 |
weighted avg | 0.9612 | 0.9609 | 0.9609 | 256 |
Precision | Recall | F1 | Support | |
---|---|---|---|---|
Fake-Face | 0.8723 | 0.9318 | 0.9011 | 44 |
Fake-Invoice | 1.0000 | 0.9778 | 0.9888 | 45 |
Fake-Medical | 1.0000 | 1.0000 | 1.0000 | 44 |
Real-Face | 0.9268 | 0.8636 | 0.8941 | 44 |
Real-Invoice | 0.9783 | 1.0000 | 0.9890 | 45 |
Real-Medical | 1.0000 | 1.0000 | 1.0000 | 34 |
Accuracy | 0.9609 | 256 | ||
macro avg | 0.9629 | 0.9622 | 0.9622 | 256 |
weighted avg | 0.9617 | 0.9609 | 0.9609 | 256 |
Precision | Recall | F1 | Support | |
---|---|---|---|---|
Fake-Face | 0.9268 | 0.8636 | 0.8941 | 44 |
Fake-Invoice | 1.0000 | 0.9773 | 0.9885 | 44 |
Fake-Medical | 1.0000 | 1.0000 | 1.0000 | 45 |
Real-Face | 0.8723 | 0.9318 | 0.9011 | 44 |
Real-Invoice | 0.9778 | 1.0000 | 0.9888 | 44 |
Real-Medical | 1.0000 | 1.0000 | 1.0000 | 34 |
Accuracy | 0.9608 | 256 | ||
macro avg | 0.9628 | 0.9621 | 0.9621 | 256 |
weighted avg | 0.9615 | 0.9608 | 0.9607 | 256 |
Average of 3-Folds | ||||||
---|---|---|---|---|---|---|
Training Accuracy | Validation Accuracy | Test Accuracy | Weighted Precision | Weighted Recall | Weighted F1 | |
VGG19 | 0.9986 | 0.9032 | 0.8996 | 0.9012 | 0.8996 | 0.8989 |
DenseNet201 | 0.9993 | 0.9163 | 0.9101 | 0.9119 | 0.9101 | 0.9097 |
MobileNetV2 | 0.9993 | 0.9137 | 0.8983 | 0.8987 | 0.8983 | 0.8974 |
ResNet101V2 | 0.9993 | 0.8980 | 0.9022 | 0.9042 | 0.9022 | 0.9018 |
EfficientNetB0 | 0.1733 | 0.1725 | 0.1721 | 0.0296 | 0.1721 | 0.0505 |
Proposed | 0.9983 | 0.9620 | 0.9608 | 0.9614 | 0.9608 | 0.9608 |
Models | Metrics | Fake Face | Fake Invoice | Fake Medical | Real Face | Real Invoice | Real Medical |
---|---|---|---|---|---|---|---|
VGG19 | Precision | 0.7508 | 1.0000 | 0.9852 | 0.7148 | 0.9781 | 1.0000 |
Recall | 0.6835 | 0.9774 | 1.0000 | 0.7741 | 1.0000 | 0.9804 | |
F1 | 0.7127 | 0.9885 | 0.9925 | 0.7413 | 0.9889 | 0.9901 | |
DenseNet201 | Precision | 0.7579 | 1.0000 | 1.0000 | 0.7483 | 0.9858 | 1.0000 |
Recall | 0.7298 | 0.9852 | 1.0000 | 0.7663 | 1.0000 | 1.0000 | |
F1 | 0.7401 | 0.9924 | 1.0000 | 0.7539 | 0.9928 | 1.0000 | |
MobileNetV2 | Precision | 0.7089 | 1.0000 | 1.0000 | 0.7141 | 0.9928 | 1.0000 |
Recall | 0.7141 | 0.9926 | 1.0000 | 0.7064 | 1.0000 | 1.0000 | |
F1 | 0.7105 | 0.9963 | 1.0000 | 0.7091 | 0.9963 | 1.0000 | |
ResNet101V2 | Precision | 0.7211 | 1.0000 | 0.9779 | 0.7776 | 0.9709 | 1.0000 |
Recall | 0.7966 | 0.9699 | 1.0000 | 0.6919 | 1.0000 | 0.9706 | |
F1 | 0.7557 | 0.9847 | 0.9889 | 0.7305 | 0.9852 | 0.9851 | |
EfficientNetB0 | Precision | 0.0575 | 0.0573 | 0.0573 | 0.0000 | 0.0000 | 0.0000 |
Recall | 0.3333 | 0.3333 | 0.3333 | 0.0000 | 0.0000 | 0.0000 | |
F1 | 0.0981 | 0.0978 | 0.0978 | 0.0000 | 0.0000 | 0.0000 | |
Proposed | Precision | 0.8905 | 0.9993 | 1.0000 | 0.9020 | 0.9854 | 1.0000 |
Recall | 0.9022 | 0.9850 | 1.0000 | 0.8874 | 1.0000 | 1.0000 | |
F1 | 0.8955 | 0.9924 | 1.0000 | 0.8939 | 0.9926 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdi, M.A.; Arshed, M.A.; Muneer, A. One Model for Many Fakes: Detecting GAN and Diffusion-Generated Forgeries in Faces, Invoices, and Medical Heterogeneous Data. Mathematics 2025, 13, 3093. https://doi.org/10.3390/math13193093
Mahdi MA, Arshed MA, Muneer A. One Model for Many Fakes: Detecting GAN and Diffusion-Generated Forgeries in Faces, Invoices, and Medical Heterogeneous Data. Mathematics. 2025; 13(19):3093. https://doi.org/10.3390/math13193093
Chicago/Turabian StyleMahdi, Mohammed A., Muhammad Asad Arshed, and Amgad Muneer. 2025. "One Model for Many Fakes: Detecting GAN and Diffusion-Generated Forgeries in Faces, Invoices, and Medical Heterogeneous Data" Mathematics 13, no. 19: 3093. https://doi.org/10.3390/math13193093
APA StyleMahdi, M. A., Arshed, M. A., & Muneer, A. (2025). One Model for Many Fakes: Detecting GAN and Diffusion-Generated Forgeries in Faces, Invoices, and Medical Heterogeneous Data. Mathematics, 13(19), 3093. https://doi.org/10.3390/math13193093