Stackelberg Game Analysis of Green Design and Coordination in a Retailer-Led Supply Chain with Altruistic Preferences
Abstract
1. Introduction
2. Literature Review
2.1. Green Design/Green Investment Strategies in Supply Chain
2.2. Altruistic Preferences in Supply Chains
2.3. Stackelberg Games in Supply Chains
2.4. Research Gaps
3. Models Construction and Solution
3.1. Problem Description and Assumptions
3.2. Research Method
3.3. Centralized Decision Model (Model )
3.4. Decentralized Model When the Dominant Retailer Is Without Altruistic Preference (Model )
3.5. Decentralized Model When the Dominant Retailer Has Altruistic Preferences (Model )
4. Equilibrium Result Analysis
4.1. The Effect of Retailer’s Altruistic Preference on Enterprise Performance and Environment
4.2. The Impact of Green-Design-Related Parameters on Optimal Supply Chain Decisions
5. Coordination Mechanism Design Under Dominant Retailer Altruistic Preferences
5.1. Green Design Cost-Sharing Contract (Model AS)
5.2. Two-Part Tariff Contract (Model AT)
6. Numerical Simulation Analysis
6.1. The Influences of Related Parameters on the Green Design and Performances of Supply Chains
6.2. The Effects of on the Environment
6.3. Investigation of the Effectiveness of the Two Coordination Contracts
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hua, J.W.; Lin, J.; Wang, K.; Liu, G. Government interventions in new technology adoption to improve product greenness. Int. J. Prod. Econ. 2023, 262, 108924. [Google Scholar] [CrossRef]
- Sun, Y.; Ying, Y. Forward-reverse blockchain traceability strategy in the NEV supply chain considering consumer green preferences. Mathematics 2025, 13, 1804. [Google Scholar] [CrossRef]
- Li, J.J.; Li, Y.J.; Song, H.; Fan, C. Sustainable value creation from a capability perspective: How to achieve sustainable product design. J. Clean. Prod. 2021, 312, 127552. [Google Scholar] [CrossRef]
- Liu, S.; Duan, C.Q.; Qiao, J.Y.; Sun, Y. Decision and coordination of sustainable supply chain considering CSR implementation and channel leadership. RAIRO-Oper. Res. 2025, 59, 907–937. [Google Scholar] [CrossRef]
- Hong, Z.F.; Guo, X.L. Green product supply chain contracts considering environmental responsibilities. Omega 2019, 83, 155–166. [Google Scholar] [CrossRef]
- Liu, G.W.; Yang, H.F.; Dai, R. Which contract is more effective in improving product greenness under different power structures: Revenue sharing or cost sharing? Comput. Ind. Eng. 2020, 148, 106701. [Google Scholar] [CrossRef]
- Yao, F.M.; Yan, Y.L.; Liu, L.K.; Sun, J. Green design strategies for sustainable supply chain considering channel leadership. RAIRO-Oper. Res. 2024, 58, 1735–1757. [Google Scholar] [CrossRef]
- Shi, X.T.; Dong, C.W.; Zhang, C.; Zhang, X. Who should invest in clean technologies in a supply chain with competition? J. Clean. Prod. 2019, 215, 689–700. [Google Scholar] [CrossRef]
- Du, P.; Yang, X.L.; Xu, L.; Tan, Y.; Li, H. Green design strategies of competing manufacturers in a sustainable supply chain. J. Clean. Prod. 2020, 265, 121–133. [Google Scholar] [CrossRef]
- Zhang, X.X.; Jin, Y.N.; Shen, C.L. Manufacturers’ green investment in a competitive market with a common retailer. J. Clean. Prod. 2020, 276, 123–132. [Google Scholar] [CrossRef]
- Yao, F.M.; Li, B.; Lv, Y.; Qin, X. Eco-labels and sales mode selection strategies for e-commerce platform supply chain. Manag. Decis. Econ. 2025, 46, 1278–1296. [Google Scholar] [CrossRef]
- Zhang, R.R.; Ma, W.M.; Si, H.Y.; Liu, J.; Liao, L. Cooperative game analysis of coordination mechanisms under fairness concerns of a green retailer. J. Retail. Consum. Serv. 2021, 59, 102361. [Google Scholar] [CrossRef]
- Zheng, X.; Govindan, K.; Deng, Q.Z.; Feng, L. Effects of design for the environment on firms’ production and remanufacturing strategies. Int. J. Prod. Econ. 2019, 213, 217–228. [Google Scholar] [CrossRef]
- Zhang, W.J.; Chen, W.W.; Li, Z.X.; Yuan, H. Strategic decision-making of competitive manufacturers: Assessing the role of product substitutability in energy performance contracting. Appl. Math. Model. 2025, 138, 115757. [Google Scholar] [CrossRef]
- Xia, L.J.; Li, K.; Wang, J.; Xia, Y.; Qin, J. Carbon emission reduction and precision marketing decisions of a platform supply chain. Int. J. Prod. Econ. 2024, 268, 109104. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, Z.Q.; Jin, M.Z.; Mao, J. Decisions and coordination of retailer-led low-carbon supply chain under altruistic preference. Eur. J. Oper. Res. 2021, 293, 910–925. [Google Scholar] [CrossRef]
- Wang, L.; Xu, T.; Chen, T. Optimal strategies in green supply chains when considering consumers’ green preferences and government subsidies. Mathematics 2025, 13, 2209. [Google Scholar] [CrossRef]
- Yenipazarli, A. To collaborate or not to collaborate: Prompting upstream eco-efficient innovation in a supply chain. Eur. J. Oper. Res. 2017, 260, 571–587. [Google Scholar] [CrossRef]
- Wu, D.D.; Ding, H.; Cheng, Y. Green technology investment in competitive supply chains: Exploring technology spillovers and altruistic preferences under carbon tax policy. J. Clean. Prod. 2025, 517, 145871. [Google Scholar] [CrossRef]
- Jie, J.; Bin, L.; Nian, Z.; Su, J. Decision-making and coordination of green closed-loop supply chain with fairness concern. J. Clean. Prod. 2021, 298, 126779. [Google Scholar]
- Wen, D.P.; Xiao, T.J.; Dastani, M. Pricing strategy and collection rate for a supply chain considering environmental responsibility behaviors and rationality degree. Comput. Ind. Eng. 2022, 169, 108290. [Google Scholar] [CrossRef]
- Raj, A.; Modak, N.M.; Kelle, P.; Singh, B. Analysis of a dyadic sustainable supply chain under asymmetric information. Eur. J. Oper. Res. 2021, 289, 582–594. [Google Scholar] [CrossRef]
- Shang, W.F.; Han, Z.X.; Wei, W.; Li, T. Competition and cooperation between green and non-green supply chains under Government’s subsidy and carbon tax to consumers. Comput. Ind. Eng. 2025, 203, 110957. [Google Scholar] [CrossRef]
- Yao, Y.; Geng, S.; Chen, J.; Shen, F.; Tang, H. Optimal decision-making in a green supply chain duopoly: A comparative analysis of subsidy strategies with data-driven marketing. Mathematics 2025, 13, 965. [Google Scholar] [CrossRef]
- Guan, Y.; Wan, C.; Wang, W. Dual-channel supply chain coordination considering green and service inputs. Sustainability 2024, 16, 6492. [Google Scholar] [CrossRef]
- Ghosh, D.; Shah, J. Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int. J. Prod. Econ. 2015, 164, 319–329. [Google Scholar] [CrossRef]
- Peng, Q.Y.; Wang, C.X.; Goh, M. Green innovation decision and coordination of supply chain under corporate social responsibility and risk preferences. Comput. Ind. Eng. 2023, 185, 109703. [Google Scholar] [CrossRef]
- Yu, X.N.; Lan, Y.F.; Zhao, R.Q. Strategic green technology innovation in a two-stage alliance: Vertical collaboration or co-development? Omega 2021, 98, 102–120. [Google Scholar] [CrossRef]
- Li, G.; Wu, H.M.; Sethi, S.P.; Zhang, X. Contracting green product supply chains considering marketing efforts in the circular economy era. Int. J. Prod. Econ. 2021, 234, 108041. [Google Scholar] [CrossRef]
- Heydari, J.; Bineshpour, P.; Walther, G.; Ülkü, M.A. Reconciling conflict of interests in a green retailing channel with green sales effort. J. Retail. Consum. Serv. 2022, 64, 102752. [Google Scholar] [CrossRef]
- Bai, Q.G.; Chen, J.G.; Xu, J.T. Energy conservation investment and supply chain structure under cap-and-trade regulation for a green product. Omega 2023, 119, 102886. [Google Scholar] [CrossRef]
- Yang, M.G.(M.); Roh, J.J.; Kang, M. The role of strategic environmental orientation in environmental design practices. Manag. Decis. 2021, 59, 341–357. [Google Scholar] [CrossRef]
- Raz, G.; Druehl, C.T.; Blass, V. Design for the environment: Life-cycle approach using a newsvendor model. Prod. Oper. Manag. 2013, 22, 940–957. [Google Scholar] [CrossRef]
- Cai, Y.-J.; Choi, T.-M.; Feng, L.P.; Li, Y. Produce’s choice of design-for-environment under environmental taxation. Eur. J. Oper. Res. 2022, 297, 532–544. [Google Scholar] [CrossRef]
- Loch, C.H.; Wu, Y.Z. Social preferences and supply chain performance: An experimental study. Manag. Sci. 2008, 54, 1835–1849. [Google Scholar] [CrossRef]
- Du, S.F.; Nie, T.F.; Chu, C.B.; Yu, Y. Reciprocal supply chain with intention. Eur.J. Oper. Res. 2014, 239, 389–402. [Google Scholar] [CrossRef]
- Cui, T.H.; Raju, J.S.; Zhang, Z.J. Fairness and channel coordination. Manag. Sci. 2007, 53, 1303–1314. [Google Scholar]
- Liu, Z.; Zheng, X.X.; Li, D.F.; Liao, C.-N.; Sheu, J.-B. A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns. Transp. Res. Part E Logist. Transp. Rev. 2021, 147, 102237. [Google Scholar] [CrossRef]
- Singh, S.P.; Adhikari, A.; Jha, A.K.; Sachan, A.; Kundu, S. Fairness-concerned greening and pricing strategies under competitions and different channel leaderships. Ind. Mark. Manag. 2023, 115, 484–509. [Google Scholar] [CrossRef]
- Wu, H.M.; Weng, J.X.; Li, G.; Zheng, H. Green subsidy Strategies and fairness concern in a Capital-Constrained supply chain. Transp. Res. Part E Logist. Transp. Rev. 2024, 192, 103693. [Google Scholar] [CrossRef]
- Feng, H.R.; Zeng, Y.L.; Cai, X.Q.; Qian, Q.; Zhou, Y. Altruistic profit allocation rules for joint replenishment with carbon cap-and-trade policy. Eur. J. Oper. Res. 2021, 290, 956–967. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.D.; Xu, Q. A supply chain coordination mechanism with suppliers’ ef-fort performance level and fairness concern. J. Retail. Consum. Serv. 2020, 53, 101950. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, Z.Q.; Shen, L.; Dong, W. Impacts of altruistic preference and re-ward-penalty mechanism on decisions of E-commerce closed-loop supply chain. J. Clean. Prod. 2021, 315, 128132. [Google Scholar] [CrossRef]
- Ge, Z.; Hu, Q. Who benefits from altruism in supply chain management? Amer. J. Opera. Res. 2012, 2, 59–72. [Google Scholar]
- Lin, Z.B. Price and location competition in supply chain with horizontal altruistic retailers. Flex. Ser. Manufact. J. 2019, 31, 255–278. [Google Scholar] [CrossRef]
- Ma, D.Q.; Hu, J.S.; Wang, W. Differential game of product–service supply chain considering consumers’ reference effect and supply chain members’ reciprocity altruism in the online-to-offline mode. Ann. Oper. Res. 2021, 304, 263–297. [Google Scholar] [CrossRef]
- Yan, Y.L.; Yao, F.M.; Wang, Y.F. Sales mode selection and blockchain adoption decisions of alternative product supply chain under consumer skepticism. J. Retail. Consum. Serv. 2025, 87, 104435. [Google Scholar] [CrossRef]
- Li, M.F.; Hong, Z.F.; Guo, X.; Yu, Y. Green design and information sharing in a horizontally competitive supply chain. Transp. Res. Part E Logist. Transp. Rev. 2025, 194, 103858. [Google Scholar] [CrossRef]
- Tian, B.; Liu, M.Q.; Pan, B.; Yuan, G.; Xie, F. Carbon emissions and sustainable supply chains: A Stackelberg game analysis of multinational firm relationships. Mathematics 2024, 12, 3983. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
The production cost of a product unit when a manufacturer does not implement green design practices. | |
Environmental impact of a product unit when a manufacturer does not implement green design practices. | |
The degree of reduction in product unition cost caused by green design level, . | |
Reduction degree of environmental impact of a product unit caused by green design level, . | |
The product unition cost when a manufacturer implements green design practices. | |
Environmental impact of a product unit when a manufacturer implements green design practices. | |
The dominant retailer’s altruistic preference coefficient. | |
Potential market size. | |
Consumers’ price sensitivity, . | |
CEA level (consumer sensitivity to manufacturer green design level), . | |
Market demand. | |
Green design investment cost coefficient, . | |
Total environmental impact of products. | |
The profits of supply chain members or whole, , represents the centralized decision model and the decentralized decision model for retailers without/with altruistic preferences; represents the manufacturer, retailer, and supply chain system. | |
Endogenous variables | |
Wholesale price. | |
Retail price. | |
Retailer profit margin. | |
Manufacturer green design level. |
Aspect | Cost-Sharing Contract | Two-Part Tariff Contract |
---|---|---|
Feasibility range | Effective under small or moderate altruistic coefficients () | Remains feasible even when altruistic coefficient () is higher |
Advantages | Achieves perfect coordination with centralized optimum; directly incentivizes manufacturer’s green investment | Provides flexible profit redistribution; strengthens cooperation by compensating retailers for altruistic concessions |
Limitations | Less effective when altruism is high; increases retailer’s risk burden | Feasible bounds of fixed transfer fees narrow as altruism rises |
Managerial insights | Best suited when the retailer seeks to strongly encourage green innovation and maximize system efficiency | Appropriate when balancing profit allocation, stabilizing long-term partnerships, and maintaining fairness |
Model | ||||||||
---|---|---|---|---|---|---|---|---|
Model | 16.43 | 20.03 | 0.52 | 32.43 | 143.06 | 200.28 | 243.20 | 343.34 |
Model | 11.77 | 16.55 | 0.88 | 55.13 | 174.26 | 239.18 | 291.46 | 413.44 |
Model | 16.55 | 16.55 | 0.88 | 55.13 | 178.11 | 235.33 | 288.76 | 413.44 |
Model | \ | 16.55 | 0.88 | 55.13 | \ | \ | \ | 413.44 |
Model | ||||||||
---|---|---|---|---|---|---|---|---|
Model | 16.43 | 20.03 | 0.52 | 32.43 | 143.06 | 200.28 | 243.20 | 343.34 |
Model | 12.32 | 16.55 | 0.88 | 55.13 | 201.86 | 211.58 | 272.14 | 413.44 |
Model | 16.55 | 16.55 | 0.88 | 55.13 | 213.16 | 200.28 | 264.23 | 413.44 |
Model | \ | 16.55 | 0.88 | 55.13 | \ | \ | \ | 413.44 |
Model | ||||||||
---|---|---|---|---|---|---|---|---|
Model | 16.43 | 20.03 | 0.52 | 32.43 | 143.06 | 200.28 | 243.20 | 343.34 |
Model | 11.22 | 16.55 | 0.88 | 55.13 | 146.67 | 266.77 | 310.77 | 413.44 |
Model | 16.55 | 16.55 | 0.88 | 55.13 | 143.06 | 270.38 | 313.30 | 413.44 |
Model | \ | 16.55 | 0.88 | 55.13 | \ | \ | \ | 413.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Liu, R.; Shahzad, F. Stackelberg Game Analysis of Green Design and Coordination in a Retailer-Led Supply Chain with Altruistic Preferences. Mathematics 2025, 13, 3082. https://doi.org/10.3390/math13193082
Zheng Y, Liu R, Shahzad F. Stackelberg Game Analysis of Green Design and Coordination in a Retailer-Led Supply Chain with Altruistic Preferences. Mathematics. 2025; 13(19):3082. https://doi.org/10.3390/math13193082
Chicago/Turabian StyleZheng, Yanming, Renzhong Liu, and Fakhar Shahzad. 2025. "Stackelberg Game Analysis of Green Design and Coordination in a Retailer-Led Supply Chain with Altruistic Preferences" Mathematics 13, no. 19: 3082. https://doi.org/10.3390/math13193082
APA StyleZheng, Y., Liu, R., & Shahzad, F. (2025). Stackelberg Game Analysis of Green Design and Coordination in a Retailer-Led Supply Chain with Altruistic Preferences. Mathematics, 13(19), 3082. https://doi.org/10.3390/math13193082