A Unified Approach to Implicit Fractional Differential Equations with Anti-Periodic Boundary Conditions
Abstract
1. Introduction
2. Preliminaries
3. Formulation of the Implicit Fractional Differential Problem
3.1. Existence and Uniqueness of the Solution for the Problem (FDE1)
3.2. Existence and Uniqueness of the Solution for the Problem (FDE2)
4. Ulam–Hyers Stability Analysis
5. Examples
6. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Delbosco, D.; Rodino, L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 1996, 204, 609–625. [Google Scholar] [CrossRef]
- Shen, T.; Liu, W.; Shen, X. Existence and uniqueness of solutions for several BVPs of fractional differential equations with p-Laplacian operator. Mediterr. J. Math. 2016, 13, 4623–4637. [Google Scholar] [CrossRef]
- Zhu, Y. Existence and uniqueness of the solution to uncertain fractional differential equation. J. Uncertain. Anal. Appl. 2015, 3, 5. [Google Scholar] [CrossRef]
- Baghani, H.; Alzabut, J.; Farokhi-Ostad, J.; Nieto, J.J. Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. J. Pseudo-Differ. Oper. Appl. 2020, 11, 1731–1741. [Google Scholar] [CrossRef]
- Qian, D.; Li, C.; Agarwal, R.P.; Wong, P.J.Y. Stability analysis of fractional differential system with Riemann—Liouville derivative. Math. Comput. Model. 2010, 52, 862–874. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.L.; Zhou, Y. New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2530–2538. [Google Scholar] [CrossRef]
- Jankowski, T. Positive solutions to fractional differential equations involving Stieltjes integral conditions. Appl. Math. Comput. 2014, 241, 200–213. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, M. Positive solutions for a class of fractional differential equations with integral boundary conditions. Appl. Math. Lett. 2014, 34, 17–21. [Google Scholar] [CrossRef]
- Tian, Y.; Bai, Z.; Sun, S. Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator. Adv. Differ. Equ. 2019, 2019, 349. [Google Scholar] [CrossRef]
- Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef]
- Harker, M. Fractional Differential Equations: Numerical Methods for Applications; Springer: Cham, Switzerland, 2025. [Google Scholar]
- Deng, P.; Zheng, J.; Zhu, G. Well-posedness and stability for a nonlinear Euler-Bernoulli beam equation. Commun. Anal. Mech. 2024, 16, 193–216. [Google Scholar] [CrossRef]
- Hongxia, L.; Sabana, Q.S.; Ruiqi, Y.; Xiaochuan, G. The stability and decay of 2D incompressible Boussinesq equation with partial vertical dissipation. Commun. Anal. Mech. 2025, 17, 100–127. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, D.; Huang, R. Boundedness and stabilization in a quasilinear chemotaxis model with nonlocal growth term and indirect signal production. Commun. Anal. Mech. 2025, 17, 387–412. [Google Scholar] [CrossRef]
- Liu, Y.H.; Bu, Z.H.; Zhang, S. Stability of pyramidal traveling fronts in time-periodic reaction—Diffusion equations with degenerate monostable and ignition nonlinearities. Adv. Nonlinear Anal. 2025, 14, 20250079. [Google Scholar] [CrossRef]
- Shang, Z.; Yang, E. Initial boundary value problem and exponential stability for the planar magnetohydrodynamics equations with temperature-dependent viscosity. Adv. Nonlinear Anal. 2024, 13, 20240013. [Google Scholar] [CrossRef]
- Wang, S.; Nie, L. Global stability and asymptotic profiles of a partially degenerate reaction diffusion Cholera model with asymptomatic individuals. Adv. Nonlinear Anal. 2024, 13, 20240059. [Google Scholar] [CrossRef]
- Zhang, N. Stability of rarefaction wave for relaxed compressible Navier-Stokes equations with density-dependent viscosity. Adv. Nonlinear Anal. 2025, 14, 2025009. [Google Scholar] [CrossRef]
- Escalante-Martínez, J.E.; Morales-Mendoza, L.J.; Cruz-Orduña, M.I.; Rodriguez-Achach, M.; Behera, D.; Laguna-Camacho, J.R.; López-Calderón, H.D.; López-Cruz, V.M. Fractional differential equation modeling of viscoelastic fluid in mass-spring-magnetorheological damper mechanical system. Eur. Phys. J. Plus 2020, 135, 847. [Google Scholar] [CrossRef]
- Meral, F.C.; Royston, T.J.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Chen, W.; Sun, H.; Zhang, X.; Korošak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59, 1754–1758. [Google Scholar] [CrossRef]
- Mehedi, I.M.; Al-Saggaf, U.M.; Mansouri, R.; Bettayeb, M. Two degrees of freedom fractional controller design: Application to the ball and beam system. Measurement 2019, 135, 13–22. [Google Scholar] [CrossRef]
- Fan, K.; Zhou, C. Mechanical solving a few fractional partial differential equations and discussing the effects of the fractional order. Adv. Math. Phys. 2020, 2020, 3758353. [Google Scholar] [CrossRef]
- Grzesikiewicz, W.; Wakulicz, A.; Zbiciak, A. Non-linear problems of fractional calculus in modeling of mechanical systems. Int. J. Mech. Sci. 2013, 70, 90–98. [Google Scholar] [CrossRef]
- Nandi, T.R.; Saha, A.K.; Roy, S. Analysis of a fractional order epidemiological model for tuberculosis transmission with vaccination and reinfection. Sci. Rep. 2024, 14, 28290. [Google Scholar] [CrossRef]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Ravichandran, C. A review of fractional order epidemic models for life sciences problems: Past, present and future. Alex. Eng. J. 2024, 95, 283–305. [Google Scholar] [CrossRef]
- Awadalla, M.; Noupoue, Y.; Yannick, Y.; Asbeh, K.A.; Ghiloufi, N. Modeling drug concentration level in blood using fractional differential equation based on Psi-Caputo derivative. J. Math. 2022, 2022, 9006361. [Google Scholar] [CrossRef]
- Bouallala, M.; Ouafik, Y. Analysis and numerical simulation for a time-fractional contact problem with history-dependent operator in thermo-viscoelasticity. New Math. Nat. Comput. 2025; in press. [Google Scholar] [CrossRef]
- Rafiq, M.; Noor, M.A.; Farwa, S.; Kamran, M.; Saeed, F.; Gepreel, K.A.; Yao, S.; Ahmad, H. Series solution to fractional contact problem using Caputo’s derivative. Open Phys. 2021, 19, 402–412. [Google Scholar] [CrossRef]
- Chauhan, R.P.; Kumar, S.; Alkahtani, B.S.T.; Alzaid, S.S. A study on fractional order financial model by using Caputo—Fabrizio derivative. Results Phys. 2024, 57, 107335. [Google Scholar] [CrossRef]
- Jin, T.; Yang, X. Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial Market. Math. Comput. Simul. 2021, 190, 203–221. [Google Scholar] [CrossRef]
- Alam, M.; Khan, A.; Asif, M. Analysis of implicit system of fractional order via generalized boundary conditions. Math. Methods Appl. Sci. 2023, 46, 10554–10571. [Google Scholar] [CrossRef]
- Guo, L.; Riaz, U.; Zada, A.; Alam, M. On implicit coupled Hadamard fractional differential equations with generalized Hadamard fractional integro-differential boundary conditions. Fractal Fract. 2023, 7, 13. [Google Scholar] [CrossRef]
- Zada, A.; Alam, M.; Khalid, K.H.; Iqbal, R.; Popa, I.L. Analysis of Q-fractional implicit differential equation with nonlocal Riemann—Liouville and Erdélyi-Kober Q-fractional integral conditions. Qual. Theory Dyn. Syst. 2022, 21, 1–39. [Google Scholar] [CrossRef]
- Alam, M.; Zada, A.; Abdeljawad, T. Stability analysis of an implicit fractional integro-differential equation via integral boundary conditions. Alex. Eng. J. 2024, 87, 501–514. [Google Scholar]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. Implicit fractional differential equation with anti-periodic boundary condition involving Caputo–Katugampola type. AIMS Math. 2020, 5, 3714–3730. [Google Scholar] [CrossRef]
- Wattanakejorn, V.; Karthikeyann, P.; Poornima, S.; Karthikeyan, K.; Sitthiwirattham, T. Existence solutions for implicit fractional relaxation differential equations with impulsive delay boundary conditions. Axioms 2022, 11, 611. [Google Scholar] [CrossRef]
- Alghanmi, M.; Agarwal, R.P.; Ahmad, B. Existence of solutions for a coupled system of nonlinear implicit differential equations involving ϱ-fractional derivative with anti periodic boundary conditions. Qual. Theory Dyn. Syst. 2024, 23, 6. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Lazreg, J.E.; N’Guérékata, G. Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses. Abstr. Appl. Anal. 2021, 2021, 5592010. [Google Scholar] [CrossRef]
- Redhwan, S.S.; Shaikh, S.L.; Abdo, M.S. Caputo-Katugampola type Implicit fractional differential equation with two-point anti-periodic boundary conditions. Results Nonlinear Anal. 2022, 5, 12–28. [Google Scholar] [CrossRef]
- Panda, S.K.; Vijayakumar, V.; Nisar, K.S. Applying periodic and anti-periodic boundary conditions in existence results of fractional differential equations via nonlinear contractive mappings. Bound. Value Probl. 2023, 2023, 91. [Google Scholar] [CrossRef]
- Zhang, W.; Ni, J. Solvability for a coupled system of perturbed implicit fractional differential equations with periodic and anti-periodic boundary conditions. J. Appl. Anal. Comput. 2021, 11, 2876–2894. [Google Scholar] [CrossRef]
- El Yazidi, Y.; Charkaoui, A.; Zeng, S. Finite element solutions for variable exponents double phase problems. Numer. Algorithms, 2025; in press. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence, uniqueness, and stability of solutions for nabla fractional difference equations. Fractal Fract. 2024, 8, 591. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence results for nabla fractional problems with anti-periodic boundary conditions. Mathematics 2025, 13, 2487. [Google Scholar] [CrossRef]
- Ali, A.; Minamoto, T.; Shah, R.; Nonlaopon, K. A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Math. 2023, 8, 2137–2153. [Google Scholar] [CrossRef]
- Almeida, R.; Jleli, M.; Samet, B. A numerical study of fractional relaxation-oscillation equations involving ψ-Caputo fractional derivative. Rev. Real Acad. Cienc. Exactas Fís. Nat. 2019, 113, 1873–1891. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 2018, 41, 336–352. [Google Scholar] [CrossRef]
- Almeida, R. Further properties of Osler’s generalized fractional integrals and derivatives with respect to another function. Rocky Mt. J. Math. 2019, 49, 2459–2493. [Google Scholar] [CrossRef]
- Ali, A.; Shah, K.; Abdeljawad, T. Study of implicit delay fractional differential equations under anti-periodic boundary conditions. Adv. Differ. Equ. 2020, 2020, 139. [Google Scholar] [CrossRef]
- Ahmad, B.; Alruwaily, Y.; Alsaedi, A.; Nieto, J.J. Fractional integro-differential equations with dual anti-periodic boundary conditions. Differ. Integral Equ. 2020, 33, 181–206. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Lazreg, J.E. On implicit k-generalized Ψ-Hilfer fractional differential coupled systems with periodic conditions. Qual. Theory Dyn. Syst. 2023, 22, 75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R. A Unified Approach to Implicit Fractional Differential Equations with Anti-Periodic Boundary Conditions. Mathematics 2025, 13, 2890. https://doi.org/10.3390/math13172890
Almeida R. A Unified Approach to Implicit Fractional Differential Equations with Anti-Periodic Boundary Conditions. Mathematics. 2025; 13(17):2890. https://doi.org/10.3390/math13172890
Chicago/Turabian StyleAlmeida, Ricardo. 2025. "A Unified Approach to Implicit Fractional Differential Equations with Anti-Periodic Boundary Conditions" Mathematics 13, no. 17: 2890. https://doi.org/10.3390/math13172890
APA StyleAlmeida, R. (2025). A Unified Approach to Implicit Fractional Differential Equations with Anti-Periodic Boundary Conditions. Mathematics, 13(17), 2890. https://doi.org/10.3390/math13172890