Reduced Order Data-Driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning
Abstract
1. Introduction
1.1. Modal Decomposition Literature Review and Previous Work
1.2. Problem Statement and Novelty of the Present Research
- A fully self-consistent algorithm incorporating Pareto front analysis to eliminate heuristic parameter tuning;
- The integration of explainable deep learning techniques to enable transparent, adaptive, and interpretable modeling;
- A compact, high-fidelity data-driven twin model balancing accuracy and computational efficiency.
2. Mathematical Background
2.1. Computational Complexity Reduction of PDEs by Reduced-Order Modeling
2.2. Koopman Operator Framework for Modal Decomposition
3. Computational Aspects
3.1. Offline Phase: Koopman Randomized Orthogonal Decomposition Algorithm
- The method yields orthonormal Koopman modes, guaranteeing mutual orthogonality and thereby enabling a more compact representation of the system dynamics (see Theorem 1 and its proof).
- To avoid the computational burden associated with traditional high-dimensional algorithms, the proposed method employs a randomized singular value decomposition (RSVD) technique for dimensionality reduction. The incorporation of randomization offers a key advantage: It eliminates the need for additional selection criteria to identify shape modes, which is typically required in classical approaches such as DMD or POD. The resulting algorithm efficiently identifies the optimal reduced-order subspace that captures the dominant Koopman mode basis, thereby ensuring both computational efficiency and representational fidelity (see Appendix B).
- The methodology aims to achieve maximal correlation and minimal reconstruction error between the data-driven twin model and the exact solution of the governing PDE (see Section 5).
3.2. Online Phase: Modeling the Data Twin Temporal Dynamic by Explainable Deep Learning
3.3. Qualitative Analysis of the Data-Driven Twin Model
3.4. Time Simulation and Validation of the Data-Driven Twin Model
4. Data-Driven Twin Modeling of Shock Wave Phenomena Using KROD
4.1. Governing Equations of the Mathematical Model
4.2. Analytical and Numerical Derivation of the Exact Solution
5. Numerical Results
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDE | Partial Differential Equation |
DTM | Data-driven Twin Model |
POD | Proper Orthogonal Decomposition |
DMD | Dynamic Mode Decomposition |
RSVD | Randomized Singular Value Decomposition |
k-RSVD | Randomized Singular Value Decomposition of rank k |
KROD | Koopman Randomized Orthogonal Decomposition |
NLARX | Nonlinear AutoRegressive models with eXogenous inputs |
MAC | Modal Assurance Criterion |
Appendix A
Appendix A.1. Derivation of the Analytical Solution Using the Cole–Hopf Transformation
Appendix A.2. Derivation of the Numerical Exact Solution Using the Gauss–Hermite Quadrature
Appendix B
Algorithm A1 (k-RSVD) Randomized Singular Value Decomposition of Rank k |
|
Algorithm A2 (KROD) Koopman Randomized Orthogonal Decomposition |
|
|
References
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and U.S. Air Force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Holmes, P.; Lumley, J.; Berkooz, G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Rowley, C.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Reduced-order models for flow control: Balanced models and Koopman modes. In Seventh IUTAM Symposium on Laminar-Turbulent Transition; IUTAM Bookseries; Springer: Dordrecht, The Netherlands, 2010; Volume 18, pp. 43–50. [Google Scholar]
- Frederich, O.; Luchtenburg, D.M. Modal analysis of complex turbulent flow. In Proceedings of the 7th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-7), Ottawa, ON, Canada, 28–31 July 2011. [Google Scholar]
- Kutz, J.; Sashidhar, D.; Sahba, S.; Brunton, S.; McDaniel, A.; Wilcox, C. Physics-informed machine-learning for modeling aero-optics. In Proceedings of the International Conference On Applied Optical Metrology IV, San Diego, CA, USA, 1–5 August 2021; Volume 11817, pp. 70–77. [Google Scholar]
- Schmid, P.J.; Violato, D.; Scarano, F. Decomposition of Time-resolved Tomographic PIV. In Proceedings of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9–12 July 2012. [Google Scholar]
- Mezić, I. Koopman Operator, Geometry, and Learning of Dynamical Systems. Not. Am. Math. Soc. 2021, 68, 1087–1105. [Google Scholar] [CrossRef]
- Ahmed, S.E.; San, O.; Bistrian, D.A.; Navon, I.M. Sampling and resolution characteristics in reduced order models of shallow water equations: Intrusive vs nonintrusive. Int. J. Numer. Methods Fluids 2020, 92, 992–1036. [Google Scholar] [CrossRef]
- Xiao, D.; Fang, F.; Heaney, C.E.; Navon, I.M.; Pain, C.C. A domain decomposition method for the non-intrusive reduced order modelling of fluid flow. Comput. Methods Appl. Mech. Eng. 2019, 354, 307–330. [Google Scholar] [CrossRef]
- Loéve, M. Sur la covariance d’une fonction aleatoire. Comptes Rendus Hebd. Séances L’Académie Sci. Paris 1945, 220, 295–296. [Google Scholar]
- Karhunen, K. Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 1946, 34, 1–7. [Google Scholar]
- Lumley, J.L. Stochastic Tools in Turbulence; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Iliescu, T. ROM Closures and Stabilizations for Under-Resolved Turbulent Flows. In Proceedings of the 2022 Spring Central Sectional Meeting, Virtual, 26–27 March 2022. [Google Scholar]
- Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T. Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison. Comput. Methods Appl. Mech. Eng. 2012, 10, 237–240. [Google Scholar] [CrossRef]
- Xiao, D.; Heaney, C.E.; Fang, F.; Mottet, L.; Hu, R.; Bistrian, D.A.; Aristodemou, D.; Navon, I.M.; Pain, C.C. A domain decomposition non-intrusive reduced order model for turbulent flows. Comput. Fluids 2019, 182, 15–27. [Google Scholar] [CrossRef]
- Gunzburger, M.; Iliescu, T.; Mohebujjaman, M.; Schneier, M. Nonintrusive stabilization of reduced order models for uncertainty quantification of time-dependent convection-dominated flows. arXiv 2018, arXiv:1810.08746. [Google Scholar]
- San, O.; Staples, A.; Wang, Z.; Iliescu, T. Approximate deconvolution large eddy simulation of a barotropic ocean circulation model. Ocean Model. 2011, 40, 120–132. [Google Scholar] [CrossRef]
- San, O.; Iliescu, T. A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation. Adv. Comput. Math. 2014, 41, 1289–1319. [Google Scholar] [CrossRef]
- Osth, J.; Noack, B.R.; Krajnovic, S.; Barros, D.; Boree, J. On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body. J. Fluid Mech. 2014, 747, 518–544. [Google Scholar] [CrossRef]
- Xiao, D.; Du, J.; Fang, F.; Pain, C.; Li, J. Parameterised non-intrusive reduced order methods for ensemble Kalman filter data assimilation. Comput. Fluids 2018, 177, 69–77. [Google Scholar] [CrossRef]
- Sierra, C.; Metzler, H.; Muller, M.; Kaiser, E. Closed-loop and congestion control of the global carbon-climate system. Clim. Change 2021, 165, 1–24. [Google Scholar] [CrossRef]
- Xiao, D.; Heaney, C.E.; Mottet, L.; Fang, F.; Lin, W.; Navon, I.M.; Guo, Y.; Matar, O.K.; Robins, A.G.; Pain, C.C. A reduced order model for turbulent flows in the urban environment using machine learning. Build. Environ. 2019, 148, 323–337. [Google Scholar] [CrossRef]
- San, O.; Maulik, R.; Ahmed, M. An artificial neural network framework for reduced order modeling of transient flows. Commun. Nonlinear Sci. Numer. Simul. 2019, 77, 271–287. [Google Scholar] [CrossRef]
- Kaptanoglu, A.; Callaham, J.; Hansen, C.; Brunton, S. Machine Learning to Discover Interpretable Models in Fluids and Plasmas. In Proceedings of the APS March Meeting 2022, Chicago, IL, USA, 14–18 March 2022. [Google Scholar]
- Owens, K.; Kutz, J. Data-driven discovery of governing equations for coarse-grained heterogeneous network dynamics. SIAM J. Appl. Dyn. Syst. 2023, 22, 2601–2623. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Pain, C.; Navon, I. Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network. Comput. Methods Appl. Mech. Eng. 2020, 365, 113000. [Google Scholar] [CrossRef]
- Dumon, A.; Allery, C.; Ammar, A. Proper Generalized Decomposition method for incompressible Navier-Stokes equations with a spectral discretization. Appl. Math. Comput. 2013, 219, 8145–8162. [Google Scholar] [CrossRef]
- Dimitriu, G.; Ştefănescu, R.; Navon, I.M. Comparative numerical analysis using reduced-order modeling strategies for nonlinear large-scale systems. J. Comput. Appl. Math. 2017, 310, 32–43. [Google Scholar] [CrossRef]
- Schmid, P.J.; Sesterhenn, J. Dynamic mode decomposition of numerical and experimental data. In Proceedings of the 61st Annual Meeting of the APS Division of Fluid Dynamics, American Physical Society, San Antonio, TX, USA, 23–25 November 2008; Volume 53. [Google Scholar]
- Schmid, P. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef]
- Koopman, B. Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. USA 1931, 17, 315–318. [Google Scholar] [CrossRef]
- Koopman, B.; von Neumann, J. Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. USA 1932, 18, 255–263. [Google Scholar] [CrossRef]
- Percic, M.; Zelenika, S.; Mezić, I. Artificial intelligence-based predictive model of nanoscale friction using experimental data. Friction 2021, 9, 1726–1748. [Google Scholar] [CrossRef]
- Pant, P.; Doshi, R.; Bahl, P.; Farimani, A.B. Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations. Phys. Fluids 2021, 33, 107101. [Google Scholar] [CrossRef]
- Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications. J. Comput. Dyn. 2014, 1, 391–421. [Google Scholar] [CrossRef]
- Brunton, S.L.; Brunton, B.W.; Proctor, J.L.; Kutz, J.N. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control. PLoS ONE 2016, 11, e0150171. [Google Scholar] [CrossRef] [PubMed]
- Kutz, J.N.; Fu, X.; Brunton, S.L. Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 2016, 15, 713–735. [Google Scholar] [CrossRef]
- Li, B.; Ma, Y.; Kutz, J.; Yang, X. The Adaptive Spectral Koopman Method for Dynamical Systems. SIAM J. Appl. Dyn. Syst. 2023, 22, 1523–1551. [Google Scholar] [CrossRef]
- Chen, K.K.; Tu, J.H.; Rowley, C.W. Variants of dynamic mode decomposition: Boundary condition, Koopman and Fourier analyses. J. Nonlinear Sci. 2012, 22, 887–915. [Google Scholar] [CrossRef]
- Jovanovic, M.R.; Schmid, P.J.; Nichols, J.W. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 2014, 26, 024103. [Google Scholar] [CrossRef]
- Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A data-driven approximation of the Koopman operator: Extending Dynamic Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [Google Scholar] [CrossRef]
- Noack, B.R.; Stankiewicz, W.; Morzynski, M.; Schmid, P.J. Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 2016, 809, 843–872. [Google Scholar] [CrossRef]
- Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 2016, 15, 142–161. [Google Scholar] [CrossRef]
- Erichson, N.B.; Donovan, C. Randomized low-rank Dynamic Mode Decomposition for motion detection. Comput. Vis. Image Underst. 2016, 146, 40–50. [Google Scholar] [CrossRef]
- Ahmed, S.E.; Dabaghian, P.H.; San, O.; Bistrian, D.A.; Navon, I.M. Dynamic mode decomposition with core sketch. Phys. Fluids 2022, 34, 066603. [Google Scholar] [CrossRef]
- Goldschmidt, A.; Kaiser, E.; Dubois, J.; Brunton, S.; Kutz, J. Bilinear dynamic mode decomposition for quantum control. New J. Phys. 2021, 23, 033035. [Google Scholar] [CrossRef]
- Le Clainche, S.; Vega, J.M. Higher Order Dynamic Mode Decomposition. SIAM J. Appl. Dyn. Syst. 2017, 16, 882–925. [Google Scholar] [CrossRef]
- Bistrian, D.A.; Navon, I.M. An improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD. Int. J. Numer. Methods Fluids 2015, 78, 552–580. [Google Scholar] [CrossRef]
- Bistrian, D.A.; Navon, I.M. The method of dynamic mode decomposition in shallow water and a swirling flow problem. Int. J. Numer. Methods Fluids 2017, 83, 73–89. [Google Scholar] [CrossRef]
- Bistrian, D.A.; Navon, I.M. Randomized dynamic mode decomposition for nonintrusive reduced order modelling. Int. J. Numer. Methods Eng. 2017, 112, 3–25. [Google Scholar] [CrossRef]
- Bistrian, D.A.; Navon, I.M. Efficiency of randomised dynamic mode decomposition for reduced order modelling. Int. J. Comput. Fluid Dyn. 2018, 32, 88–103. [Google Scholar] [CrossRef]
- Bistrian, D.A.; Dimitriu, G.; Navon, I.M. Modeling dynamic patterns from COVID-19 data using randomized dynamic mode decomposition in predictive mode and ARIMA. In Proceedings of the AIP Conference Proceedings, Albena, Bulgaria, 24–29 June 2020; Volume 2302, p. 080002. [Google Scholar]
- Bistrian, D.A.; Dimitriu, G.; Navon, I.M. Processing epidemiological data using dynamic mode decomposition method. In Proceedings of the AIP Conference Proceedings, Albena, Bulgaria, 20–25 June 2019; Volume 2164, p. 080002. [Google Scholar]
- Koopman, B. On distributions admitting a sufficient statistic. Trans. Am. Math. Soc. 1936, 39, 399–400. [Google Scholar] [CrossRef]
- Lasota, A.; Mackey, M.C. Probabilistic Properties of Deterministic Systems; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Lasota, A.; Mackey, M. Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Mezić, I.; Banaszuk, A. Comparison of systems with complex behavior. Phys. D Nonlinear Phenom. 2004, 197, 101–133. [Google Scholar] [CrossRef]
- Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 2005, 41, 309–325. [Google Scholar] [CrossRef]
- Rowley, C.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009, 641, 115–127. [Google Scholar] [CrossRef]
- Perron, O. Zur Theorie der Matrices. Math. Ann. 1907, 64, 248–263. [Google Scholar] [CrossRef]
- Frobenius, G. Uber Matrizen aus positiven Elementen. Sitzungsberichte Königlich Preuss. Akad. Wiss. 1908, 1, 471–476. [Google Scholar]
- Ruelle, D.P. Chance and Chaos; Princeton University Press: Princeton, NJ, USA, 1993; Volume 110. [Google Scholar]
- Mezić, I. On numerical approximations of the Koopman operator. Mathematics 2022, 10, 1180. [Google Scholar] [CrossRef]
- Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 2011, 53, 217–288. [Google Scholar] [CrossRef]
- Surasinghe, S.; Bollt, E.M. Randomized Projection Learning Method for DynamicMode Decomposition. Mathematics 2021, 9, 2803. [Google Scholar] [CrossRef]
- Qiu, Y.; Sun, W.; Zhou, G.; Zhao, Q. Towards efficient and accurate approximation: Tensor decomposition based on randomized block Krylov iteration. Signal Image Video Process 2024, 18, 6287–6297. [Google Scholar] [CrossRef]
- Bistrian, D.A. High-fidelity digital twin data models by randomized dynamic mode decomposition and deep learning with applications in fluid dynamics. Modelling 2022, 3, 314–332. [Google Scholar] [CrossRef]
- Golub, G.H.; Loan, C.F.V. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Juditsky, A.; Hjalmarsson, H.; Benveniste, A.; Deylon, B.; Ljung, L.; Sloberg, J.; Zhang, Q. Nonlinear black-box models in system identification: Mathematical foundations. Automatica 1995, 31, 1725–1750. [Google Scholar] [CrossRef]
- Ljung, L. System Identification: Theory for the User; Information and System Sciences Series; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Nelles, O. Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Liu, G.; Kadirkamanathan, V.; Billings, S. Predictive control for non-linear systems using neural networks. Int. J. Control 1998, 71, 1119–1132. [Google Scholar] [CrossRef]
- Tieleman, T.; Hinton, G. Divide the Gradient by a Running Average of Its Recent Magnitude; Neural Networks for Machine Learning; Coursera: Mountain View, CA, USA, 2012. [Google Scholar]
- Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.; Guo, Y. Model identification of reduced order fluid dynamics systems using deep learning. Int. J. Numer. Methods Fluids 2018, 86, 255–268. [Google Scholar] [CrossRef]
- Ewins, D. Modal Testing: Theory, Practice and Application; Research Studies Press Ltd.: Totnes Devon, UK, 2000. [Google Scholar]
- Hopf, E. The partial differential equation ut + uux = νuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Cole, J.D. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
- Brass, H.; Petras, K. Quadrature Theory. The Theory of Numerical Integration on a Compact Interval; American Mathematical Society: Providence, RI, USA, 2011. [Google Scholar]
- Noack, B.R.; Morzynski, M.; Tadmor, G. Reduced-Order Modelling for Flow Control; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
Mathematical Notation | Description |
---|---|
Koopman operator at time t, indicating its dependence on the temporal variable in continuous-time dynamical systems. | |
The semigroup of Koopman operators. | |
Koopman operator for discrete-time dynamical system. | |
Number of spatial grid points. | |
Number of time steps or snapshots, excluding the initial state. | |
The norm for functions in the Hilbert space . | |
The Euclidean (or ) norm for vectors. | |
Measurements of the PDE solution sampled uniformly in time, with step size . | |
Reduced-order approximation of the PDE solution at time , using the k-th order model. | |
Rank of the optimal Koopman basis, computed by the algorithm. | |
Leading Koopman modes computed by the algorithm, representing dominant spatial patterns. | |
The modal growing amplitudes. | |
The system temporal dynamics in the reduced-order space, modeled by the deep learning architecture. | |
The reduced-order data-driven twin model for the PDE solution. | |
H | Conjugate transpose (Hermitian transpose); for a matrix A, . |
Inner product operator; for vectors , . | |
The jth column of the matrix X. | |
Solution of the PDE, representing the system state at spatial location x and time t. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bistrian, D.A. Reduced Order Data-Driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning. Mathematics 2025, 13, 2870. https://doi.org/10.3390/math13172870
Bistrian DA. Reduced Order Data-Driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning. Mathematics. 2025; 13(17):2870. https://doi.org/10.3390/math13172870
Chicago/Turabian StyleBistrian, Diana Alina. 2025. "Reduced Order Data-Driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning" Mathematics 13, no. 17: 2870. https://doi.org/10.3390/math13172870
APA StyleBistrian, D. A. (2025). Reduced Order Data-Driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning. Mathematics, 13(17), 2870. https://doi.org/10.3390/math13172870