A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations
Abstract
1. Introduction
2. Numerical Method
2.1. The Wave Equation
2.2. Space–Time Collocation Trefftz Method
2.3. The Multiple-Scale Trefftz Method
3. Accuracy Analysis
4. Numerical Examples
4.1. Complicated Wave Vibrating Problem
4.2. Inverse Problem of Vibrations
4.3. Mixed-Boundary Condition Problem
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Towne, D.H. Wave Phenomena; Dover Publications: New York, NY, USA, 2014. [Google Scholar]
- Yusuf, A.; Sulaiman, T.A.; Abdeljabbar, A.; Alquran, M. Breather waves, analytical solutions and conservation laws using Lie–Bäcklund symmetries to the (2+1)-dimensional Chaffee–Infante equation. J. Ocean Eng. Sci. 2023, 8, 145–151. [Google Scholar] [CrossRef]
- Wang, S.; Ge, Y. Efficient sixth-order finite difference method for the two-dimensional nonlinear wave equation with variable coefficient. Math. Sci. 2024, 18, 257–273. [Google Scholar] [CrossRef]
- Cen, J.; Zou, Q. Deep finite volume method for partial differential equations. J. Comput. Phys. 2024, 517, 113307. [Google Scholar] [CrossRef]
- Jiang, S.; Deng, W.; Ooi, E.T.; Sun, L.; Du, C. Data-driven algorithm based on the scaled boundary finite element method and deep learning for the identification of multiple cracks in massive structures. Comput. Struct. 2024, 291, 107211. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, C.; Liu, Y.; Li, H.; Wang, J. Optimal time two-mesh mixed finite element method for a nonlinear fractional hyperbolic wave model. Commun. Anal. Mech. 2024, 16, 24–52. [Google Scholar] [CrossRef]
- Aimi, A.; Desiderio, L.; Diligenti, M.; Guardasoni, C. A numerical study of energetic BEM-FEM applied to wave propagation in 2D multidomains. Publ. L’institut Math. 2014, 96, 5–22. [Google Scholar] [CrossRef]
- Desiderio, L.; Falletta, S.; Ferrari, M.; Scuderi, L. CVEM-BEM coupling for the simulation of time-domain wave fields scattered by obstacles with complex geometries. Comput. Methods Appl. Math. 2023, 23, 353–372. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Takizawa, K.; Tezduyar, T.E.; Korobenko, A.; Kuraishi, T.; Otoguro, Y. Computational aerodynamics with isogeometric analysis. J. Mech. 2023, 39, 24–39. [Google Scholar] [CrossRef]
- Delsohn, S.R.; Oñate, E. To mesh or not to mesh: That is the question…. Comput. Methods Appl. Mech. Eng. 2006, 195, 4681–4696. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, H.; Yan, D. Analysis of the band structure of transient in-plane elastic waves based on the localized radial basis function collocation method. Appl. Math. Model. 2024, 125, 468–484. [Google Scholar] [CrossRef]
- Lin, X.; Xu, L.; Liu, Y.C.; Fan, C.M. An efficient localized Trefftz method for the simulation of two-dimensional sloshing behaviors. Ocean Eng. 2024, 299, 117414. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Z.; Jiang, Z.; Zhou, J. Novel method of particular solutions for second-order variable coefficient differential equations on a square. Discret. Contin. Dyn. Syst.-Ser. B 2023, 28, 3294–3306. [Google Scholar] [CrossRef]
- Cheng, A.H.D.; Chen, C.S.; Karageorghis, A. An Introduction to the Method of Fundamental Solutions; World Scientific: Singapore, 2025. [Google Scholar]
- Xu, L.; Wu, S.L. Stability of time-marching MPS–MFS for wave equations. J. Sci. Comput. 2024, 101, 62. [Google Scholar] [CrossRef]
- He, F.; Jiang, H.; Lin, Y.; Pan, J.; Zhang, Y.; Huang, C. Multi-phase SPH-FDM and experimental investigations on the hydrodynamics of an oscillating water column wave energy device. Coast. Eng. 2024, 192, 104569. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, C.S.; Park, K.; Lee, H.J.; Lee, S. A physics-informed and data-driven deep learning approach for wave propagation and its scattering characteristics. Eng. Comput. 2023, 39, 2609–2625. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Yang, Y.; Zhang, X. Deep learning-based solution for the KdV-family governing equations of ocean internal waves. Ocean. Model. 2025, 194, 102493. [Google Scholar] [CrossRef]
- Hong, L.D.; Yeih, W.; Ku, C.Y.; Su, Y. Localized space-time Trefftz method for diffusion equations in complex domains. Eng. Anal. Bound. Elem. 2024, 169, 105977. [Google Scholar] [CrossRef]
- Ku, C.Y.; Kuo, C.L.; Fan, C.M.; Liu, C.S.; Guan, P.C. Numerical solution of three-dimensional Laplacian problems using the multiple scale Trefftz method. Eng. Anal. Bound. Elem. 2015, 50, 157–168. [Google Scholar] [CrossRef]
- Liu, C.S.; Kuo, C.L. A multiple-direction Trefftz method for solving the multi-dimensional wave equation in an arbitrary spatial domain. J. Comput. Phys. 2016, 321, 39–54. [Google Scholar] [CrossRef]
- Gu, M.H.; Fan, C.M.; Young, D.L. The method of fundamental solutions for the multi-dimensional wave equations. J. Mar. Sci. Technol. 2011, 19, 2. [Google Scholar] [CrossRef]
Index | Formula | Index | Formula |
---|---|---|---|
Index | Formula |
---|---|
0 | |
0 | |
Model | FEM [22] | MPS-MFS [22] | This Study |
---|---|---|---|
Points | 15,981 | 1209 | 3925 |
Noise Level | |||||
---|---|---|---|---|---|
MAE | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, L.-D.; Zhang, C.-Y.; Yeih, W.; Ku, C.-Y.; He, X.; Lu, C.-K. A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations. Mathematics 2025, 13, 2831. https://doi.org/10.3390/math13172831
Hong L-D, Zhang C-Y, Yeih W, Ku C-Y, He X, Lu C-K. A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations. Mathematics. 2025; 13(17):2831. https://doi.org/10.3390/math13172831
Chicago/Turabian StyleHong, Li-Dan, Chen-Yu Zhang, Weichung Yeih, Cheng-Yu Ku, Xi He, and Chang-Kai Lu. 2025. "A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations" Mathematics 13, no. 17: 2831. https://doi.org/10.3390/math13172831
APA StyleHong, L.-D., Zhang, C.-Y., Yeih, W., Ku, C.-Y., He, X., & Lu, C.-K. (2025). A Multiple-Scale Space–Time Collocation Trefftz Method for Two-Dimensional Wave Equations. Mathematics, 13(17), 2831. https://doi.org/10.3390/math13172831