The Proximal Point Method for Infinite Families of Maximal Monotone Operators and Set-Valued Mappings
Abstract
1. Preliminaries and the First Main Result
2. Infinite Families of Variational Inequalities
3. Conclusions
Funding
Conflicts of Interest
References
- Bacak, M. Proximal point algorithm in metric spaces. Israel J. Math. 2012, 160, 1–13. [Google Scholar]
- Hager, W.W.; Zhang, H. Asymptotic convergence analysis of a new class of proximal point methods. SIAM J. Control Optim. 2007, 46, 1683–1704. [Google Scholar] [CrossRef]
- Iusem, A.; Resmerita, E. A proximal point method in nonreflexive Banach spaces. Set-Valued Var. Anal. 2010, 18, 109–120. [Google Scholar] [CrossRef]
- Marino, G.; Xu, H.K. Convergence of generalized proximal point algorithms. Commun. Pure Appl. Anal. 2004, 3, 791–808. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1976, 1, 97–116. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Burachik, R.S.; Iusem, A.N. A generalized proximal point algorithm for the variational inequality problem in a Hilbert space. SIAM J. Optim. 1998, 8, 197–216. [Google Scholar]
- Burachik, R.S.; Iusem, A.N.; Svaiter, B.F. Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 1997, 5, 159–180. [Google Scholar] [CrossRef]
- Kaplan, A.; Tichatschke, R. Bregman-like functions and proximal methods for variational problems with nonlinear constraints. Optimization 2007, 56, 253–265. [Google Scholar]
- Konnov, I.V. Combined Relaxation Methods for Variational Inequalities; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Anh, P.N.; Thach, H.T.C. New inertial proximal algorithms for solving multivalued variational inequalities. Appl. Set-Valued Anal. Optim. 2024, 6, 275–294. [Google Scholar] [CrossRef]
- Dempe, S.; Khamisov, O.; Kochetov, Y. A special three-level optimization problem. J Glob. Optim. 2020, 76, 519–531. [Google Scholar] [CrossRef]
- Chadli, O.; Chbani, Z.; Riahi, H. Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 2000, 105, 299–323. [Google Scholar]
- Zaslavski, A.J. The proximal point method with remotest set control for maximal monotone operators and quasi-nonexpansive mapping. Mathematics 2025, 13, 2282. [Google Scholar] [CrossRef]
- Minty, G.J. Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 1962, 29, 341–346. [Google Scholar] [CrossRef]
- Moreau, J.J. Proximite et dualite dans un espace Hilbertien. Bull. Soc. Math. France 1965, 93, 273–299. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B.; Yang, H.; Cao, J. Positive almost periodicity on SICNNs incorporating mixed delays and D operator. Nonlinear Anal. Model. Control 2022, 27, 719–739. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B. Exponential stability of a diffusive Nicholson’s blowflies equation accompanying multiple time-varying delays. Appl. Math. Lett. 2025, 163, 109451. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. The Proximal Point Method for Infinite Families of Maximal Monotone Operators and Set-Valued Mappings. Mathematics 2025, 13, 2765. https://doi.org/10.3390/math13172765
Zaslavski AJ. The Proximal Point Method for Infinite Families of Maximal Monotone Operators and Set-Valued Mappings. Mathematics. 2025; 13(17):2765. https://doi.org/10.3390/math13172765
Chicago/Turabian StyleZaslavski, Alexander J. 2025. "The Proximal Point Method for Infinite Families of Maximal Monotone Operators and Set-Valued Mappings" Mathematics 13, no. 17: 2765. https://doi.org/10.3390/math13172765
APA StyleZaslavski, A. J. (2025). The Proximal Point Method for Infinite Families of Maximal Monotone Operators and Set-Valued Mappings. Mathematics, 13(17), 2765. https://doi.org/10.3390/math13172765