Periodic Solutions for a Class of 2n-Order Ordinary Differential Equations
Abstract
1. Introduction
2. Autonomous Case
2.1. Variational Formulations and the Euler–Lagrange System
2.2. Existence of Periodic Solutions
3. Non-Autonomous Case
3.1. Variational Formulations and the Euler–Lagrange System
3.2. Existence of Periodic Solutions
4. Application and Validation in Real Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poincaré, H. On the three-body problem and the equations of dynamics. Acta Math. 1890, 13, 144203. [Google Scholar]
- Hannsgen, K.B. Stability and periodic solutions of ordinary and functional differential equations (TA Burton). SIAM Rev. 1987, 29, 652–654. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z. Existence of multiple periodic solutions to asymptotically linear wave equations in a ball. Calc. Var. Partial. Differ. Equ. 2017, 56, 58. [Google Scholar] [CrossRef]
- Gluckheimer, J.; Holmes, P.; Lee, K.K. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Phys. Today 1985, 38, 102–105. [Google Scholar] [CrossRef]
- Hirsch, M.W. The dynamical systems approach to differential equations. Bull. Am. Math. Soc. 1984, 14, 1–64. [Google Scholar] [CrossRef]
- Carath, C. Calculus of Variations and Partial Differential Equations of First Order; American Mathematical Society: Providence, RI, USA, 2024; Volume 318. [Google Scholar]
- Massera, J.L. The existence of periodic solutions of systems of differential equations. Duke Math. J. 1950, 17, 457–475. [Google Scholar] [CrossRef]
- Carlson, D.A. An observation on two methods of obtaining solutions to variational problems. J. Optim. Theory Appl. 2002, 114, 345–361. [Google Scholar] [CrossRef]
- Wolfe, M.A. On the existence of periodic solutions of periodically perturbed conservative systems. J. Math. Anal. Appl. 1990, 153, 78–83. [Google Scholar] [CrossRef]
- Zuhe, S.; Wolfe, M.A. New results on the existence of periodic solutions of periodically perturbed conservative systems. J. Math. Anal. Appl. 1997, 206, 168–175. [Google Scholar] [CrossRef]
- Dang, G. Elliptic and multiple-valued solutions of some higher-order ordinary differential equations. Electron. Res. Arch. 2023, 31, 5946–5958. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Periodic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 1978, 31, 157–184. [Google Scholar] [CrossRef]
- Bayat, M.; Asadi, M. Periodic solutions of certain higher-order autonomous differential equations via topological degree theory. Adv. Nonlinear Anal. 2023, 7, 193–205. [Google Scholar] [CrossRef]
- Ji, S.G.; Shi, S.Y. Periodic solutions for a class of second-order ordinary differential equations. J. Optim. Theory Appl. 2006, 130, 125–137. [Google Scholar] [CrossRef]
- Leitmann, G. A note on absolute extrema of certain integrals. J. Math. Anal. Appl. 1967, 2, 55–59. [Google Scholar] [CrossRef]
- Dockner, E.J.; Leitmann, G. Coordinate transformations and derivation of open-loop Nash equilibria. J. Optim. Theory Appl. 2001, 110, 1–15. [Google Scholar] [CrossRef]
- Leitmann, G. On a class of direct optimization problems. J. Optim. Theory Appl. 2001, 108, 467–481. [Google Scholar] [CrossRef]
- Leitmann, G. A direct method of optimization and its application to a class of differential games. Dyn. Contin. Discret. Impuls. Syst. Ser. 2004, 11, 190–204. [Google Scholar]
- Monzon, G. Fractional variational iteration method for higher-order fractional differential equations. J. Fract. Calc. Appl. 2024, 15, 1–15. [Google Scholar] [CrossRef]
- Kovtunenko, V.A.; Itou, H.; Khludnev, A.M.; Rudoy, E.M. Non-smooth variational problems and applications. Philos. Trans. R. Soc. A 2022, 380, 20210364. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Iambor, L.F. The Traveling Wave Solutions to a Variant of the Boussinesq Equation. Electron. J. Appl. Math. 2023, 1, 26–37. [Google Scholar] [CrossRef]
- Duffing, G. Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung; Vieweg: Kranzberg, Germany, 1918; pp. 41–42. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Sun, J.; Pang, Y. Periodic Solutions for a Class of 2n-Order Ordinary Differential Equations. Mathematics 2025, 13, 2757. https://doi.org/10.3390/math13172757
Li W, Sun J, Pang Y. Periodic Solutions for a Class of 2n-Order Ordinary Differential Equations. Mathematics. 2025; 13(17):2757. https://doi.org/10.3390/math13172757
Chicago/Turabian StyleLi, Wenjin, Jiaxuan Sun, and Yanni Pang. 2025. "Periodic Solutions for a Class of 2n-Order Ordinary Differential Equations" Mathematics 13, no. 17: 2757. https://doi.org/10.3390/math13172757
APA StyleLi, W., Sun, J., & Pang, Y. (2025). Periodic Solutions for a Class of 2n-Order Ordinary Differential Equations. Mathematics, 13(17), 2757. https://doi.org/10.3390/math13172757