The Nonlocal Almgren Problem
Abstract
1. Introduction
1.1. The Free Energy
1.2. The Binding Energy
1.3. The Nonlocal Free Energy
1.4. The Nonlocal Binding Energy
1.5. The Main Problem
- 1.
- Assuming coercivity, there are minima for [30].
- 2.
- Assuming additionally that m is sufficiently small and g is locally Lipschitz, all minimizers are convex [28].
- 3.
- One may construct a g that is convex, , so that there are no minimizers if ; see Theorem 3.
- 4.
- Assuming , is increasing, convex, , there exists a stability estimate similar to (3); see Theorem 1.
- 5.
- Assuming and that up to sets of measure zero g admits unique minimizers , there exist energy moduli. In addition, assuming that m is sufficiently small, the energy modulus has a product structure; see Proposition 1 and Theorem 4.
- 6.
- Upper bounds for the moduli are obtained with minimal assumptions; see Theorem 2.
2. Stability for Nonlocal Free Energy Minimization
- (i)
- for some ;
- (ii)
- supposing , , thenfor some explicit .
- (i)
- if is locally uniformly differentiable, there exists such that, if , one haswith , ;
- (ii)
- if , there exists such that, if , , thenas , ;
- (iii)
- if , there exist such that, if , , then;
- (iv)
- if is twice locally uniformly differentiable, there exists such that, if ,with ;
- (v)
- if , there exist such that, if , , then.
3. Conclusions and Directions for Future Research
- (1)
- Assuming radial symmetry on the potential, a stability estimate is proven in Theorem 1 via the spherical geometry.
- (2)
- Assuming that the potential is—up to sets of measure zero—locally bounded, and also that—up to sets of measure zero—it admits unique minimizers, the existence of energy moduli is shown; see Proposition 1. Furthermore, assuming small mass, the energy modulus is proven to have a product structure; see Theorem 4.
- (3)
- An explicit convex potential , is constructed, illuminating that there are no minimizers to the nonlocal free energy optimization under a mass constraint for positive masses; see Theorem 3.
- (4)
- Upper bounds for the moduli are obtained with minimal assumptions; see Theorem 2.
- (5)
- Future research directions: replacing 4 with 2 in Theorem 1 (i) and obtaining the explicit constant analogously to (ii); removing the symmetry assumption on g and imposing coercivity in Theorem 1; calculating the modulus in Theorem 4.
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Compactness: Existence of Moduli
Appendix A.2. Bounds on the Moduli
Appendix A.3. Non-Existence of Minimizers
Appendix A.4. A Product Property
References
- Figalli, A. Stability in geometric and functional inequalities. In European Congress of Mathematics, Proceedings of the 6th ECM Congress, Kraków, Poland, 2–7 July 2012; European Mathematical Society (EMS): Zürich, Switzerland, 2013; pp. 585–599. [Google Scholar] [CrossRef]
- Indrei, E. The one–dimensional equilibrium shape of a crystal. arXiv 2025, arXiv:2501.07900. [Google Scholar]
- Indrei, E. On the equilibrium shape of a crystal. Calc. Var. Partial Differ. Equ. 2024, 63, 97. [Google Scholar] [CrossRef]
- Indrei, E.; Karakhanyan, A. Minimizing the free energy. arXiv 2023, arXiv:2304.01866. [Google Scholar] [CrossRef]
- Indrei, E.; Karakhanyan, A. On the Three-Dimensional Shape of a Crystal. Mathematics 2025, 13, 614. [Google Scholar] [CrossRef]
- Figalli, A.; Zhang, Y.R.Y. Strong Stability for the Wulff Inequality with a Crystalline Norm. Commun. Pure Appl. Math. 2022, 75, 422–446. [Google Scholar] [CrossRef]
- Taylor, J.E. Crystalline variational problems. Bull. Am. Math. Soc. 1978, 84, 568–588. [Google Scholar] [CrossRef]
- Taylor, J.E.; Almgren, F.J., Jr. Optimal crystal shapes. In Variational Methods for Free Surface Interfaces, Proceedings of the Conference Held at Vallombrosa Center, Menlo Park, CA, USA, 7–12 September 1985; Springer: New York, NY, USA, 1987; pp. 1–11. [Google Scholar]
- Fonseca, I. The Wulff theorem revisited. Proc. R. Soc. Lond. Ser. A 1991, 432, 125–145. [Google Scholar] [CrossRef]
- Fonseca, I.; Müller, S. A uniqueness proof for the Wulff theorem. Proc. R. Soc. Edinb. Sect. A 1991, 119, 125–136. [Google Scholar] [CrossRef]
- Figalli, A.; Maggi, F.; Pratelli, A. A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 2010, 182, 167–211. [Google Scholar] [CrossRef]
- Dipierro, S.; Poggesi, G.; Valdinoci, E. Radial symmetry of solutions to anisotropic and weighted diffusion equations with discontinuous nonlinearities. Calc. Var. Partial Differ. Equ. 2022, 61, 72. [Google Scholar] [CrossRef]
- Figalli, A.; Maggi, F. On the shape of liquid drops and crystals in the small mass regime. Arch. Ration. Mech. Anal. 2011, 201, 143–207. [Google Scholar] [CrossRef]
- Gibbs, J. On the equilibrium of heterogeneous substances. Am. J. Sci. 1878, s3-16, 441–458. [Google Scholar] [CrossRef]
- Curie, P. Sur la formation des cristaux et sur les constantes capillaires de leurs different faces. Bull. Soc. Fr. Mineral. Cristallogr. 1885, 8, 145–150. [Google Scholar]
- Indrei, E. The equilibrium shape of a planar crystal in a convex coercive background is convex. arXiv 2020, arXiv:2008.02238. [Google Scholar]
- Frank, R.L.; Nam, P.T. Existence and nonexistence in the liquid drop model. Calc. Var. Partial Differ. Equ. 2021, 60, 223. [Google Scholar] [CrossRef]
- Gamow, G. Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. Ser. A 1930, 126, 632–644. [Google Scholar]
- Indrei, E. Small mass uniqueness in the anisotropic liquid drop model and the critical mass problem. arXiv 2023, arXiv:2311.16573. [Google Scholar] [CrossRef]
- Chodosh, O.; Ruohoniemi, I. On minimizers in the liquid drop model. arXiv 2024, arXiv:2401.04822v1. [Google Scholar] [CrossRef]
- Figalli, A.; Fusco, N.; Maggi, F.; Millot, V.; Morini, M. Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 2015, 336, 441–507. [Google Scholar] [CrossRef]
- Del Pino, M.; Musso, M.; Zuniga, A. Delaunay-like Compact Equilibria in the Liquid Drop Model. arXiv 2024, arXiv:2409.14892v1. [Google Scholar] [CrossRef]
- Indrei, E. Sharp Stability for LSI. Mathematics 2023, 11, 2670. [Google Scholar] [CrossRef]
- Indrei, E. W1,1 stability for the LSI. J. Differ. Equ. 2025, 421, 196–207. [Google Scholar] [CrossRef]
- Indrei, E. On the first eigenvalue of the Laplacian for polygons. J. Math. Phys. 2024, 65, 041506. [Google Scholar] [CrossRef]
- Frank, R.L.; Lieb, E.H.; Seiringer, R. Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Am. Math. Soc. 2008, 21, 925–950. [Google Scholar] [CrossRef]
- Caffarelli, L.; Roquejoffre, J.M.; Savin, O. Nonlocal minimal surfaces. Commun. Pure Appl. Math. 2010, 63, 1111–1144. [Google Scholar] [CrossRef]
- Bessas, K.; Novaga, M.; Onoue, F. On the shape of small liquid drops minimizing nonlocal energies. ESAIM Control Optim. Calc. Var. 2023, 29, 86. [Google Scholar] [CrossRef]
- Onoue, F. Some Variational Problems Involving Nonlocal Perimeters and Applications. Ph.D. Dissertation, Scuola Normale Superiore di Pisa, Pisa, Italy, 2022. [Google Scholar]
- Cesaroni, A.; Novaga, M. Volume constrained minimizers of the fractional perimeter with a potential energy. Discret. Contin. Dyn. Syst. Ser. S 2017, 10, 715–727. [Google Scholar] [CrossRef]
- Onoue, F. Nonexistence of minimizers for a nonlocal perimeter with a Riesz and a background potential. Rend. Semin. Mat. Univ. Padova 2022, 147, 111–137. [Google Scholar] [CrossRef]
- Hall, R.R. A quantitative isoperimetric inequality in n-dimensional space. J. Reine Angew. Math. 1992, 428, 161–175. [Google Scholar] [CrossRef]
- Fusco, N.; Maggi, F.; Pratelli, A. The sharp quantitative isoperimetric inequality. Ann. Math. 2008, 168, 941–980. [Google Scholar] [CrossRef]
- Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 1991, 44, 375–417. [Google Scholar] [CrossRef]
- Figalli, A.; Indrei, E. A sharp stability result for the relative isoperimetric inequality inside convex cones. J. Geom. Anal. 2013, 23, 938–969. [Google Scholar] [CrossRef]
- Indrei, E. A weighted relative isoperimetric inequality in convex cones. Methods Appl. Anal. 2021, 28, 1–14. [Google Scholar] [CrossRef]
- Poggesi, G. Soap bubbles and convex cones: Optimal quantitative rigidity. Trans. Am. Math. Soc. 2024, 377, 6619–6668. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indrei, E. The Nonlocal Almgren Problem. Mathematics 2025, 13, 2716. https://doi.org/10.3390/math13172716
Indrei E. The Nonlocal Almgren Problem. Mathematics. 2025; 13(17):2716. https://doi.org/10.3390/math13172716
Chicago/Turabian StyleIndrei, Emanuel. 2025. "The Nonlocal Almgren Problem" Mathematics 13, no. 17: 2716. https://doi.org/10.3390/math13172716
APA StyleIndrei, E. (2025). The Nonlocal Almgren Problem. Mathematics, 13(17), 2716. https://doi.org/10.3390/math13172716