Toward a Distributed Potential Game Optimization to Sensor Area Coverage Problem
Abstract
1. Introduction
2. Preliminaries and Game Model
2.1. Sensor Area Coverage Problem
2.2. Potential Game
3. Distributed Algorithm Designed and Analysis
3.1. Algorithm Design
3.2. Convergence Analysis
4. Numerical Simulation
4.1. Simulation Set
4.2. Compared with the Existing Representative Algorithms
5. Conclusions and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Notation | Definitions |
the area covered by sensor i under coverage radius | |
the cost function of sensor i under coverage radius | |
V | the set of players (sensors) |
n | the number of players |
F | the set of cost functions |
X | the strategy space |
the strategy set of player i | |
x | the strategy profile (solution) |
the Nash equilibrium | |
the set of all Nash equilibriums | |
the strategy of player i | |
the strategy profile of all players expect player i | |
the best response of player i at time step t | |
the coverage radius of player i | |
c | the communication radius of all sensors |
the utility of player i | |
the best value in a set of data | |
the potential function | |
the neighbor set of player i |
References
- Zhou, E.; Liu, Z.; Zhou, W.; Lan, P.; Dong, Z. Position and orientation planning of the uav with rectangle coverage area. IEEE Trans. Veh. Technol. 2025, 74, 1719–1724. [Google Scholar] [CrossRef]
- Li, X.; Lu, X.; Chen, W.; Ge, D.; Zhu, J. Research on uavs reconnaissance task allocation method based on communication preservation. IEEE Trans. Consum. Electron. 2024, 70, 684–695. [Google Scholar] [CrossRef]
- Shaofei, M.; Jiansheng, S.; Qi, Y.; Wei, X. Analysis of detection capabilities of leo reconnaissance satellite constellation based on coverage performance. J. Syst. Eng. Electron. 2018, 29, 98–104. [Google Scholar] [CrossRef]
- Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage path planning of heterogeneous unmanned aerial vehicles based on ant colony system. Swarm Evol. Comput. 2022, 69, 101005. [Google Scholar] [CrossRef]
- Hu, B.-B.; Zhang, H.-T.; Liu, B.; Ding, J.; Xu, Y.; Luo, C.; Cao, H. Coordinated navigation control of cross-domain unmanned systems via guiding vector fields. IEEE Trans. Control Syst. Technol. 2024, 32, 550–563. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, X.; Deng, X.; Liu, S.; Yin, D.; Gao, H.; Yang, L.T. Area coverage reliability evaluation for collaborative intelligence and meta-computing of decentralized industrial internet of things. IEEE Internet Things J. 2025, 12, 13734–13745. [Google Scholar] [CrossRef]
- Yang, F.; Shu, L.; Duan, N.; Yang, X.; Hancke, G.P. Complete area c-probability coverage in solar insecticidal lamps internet of things. IEEE Internet Things J. 2023, 10, 22764–22774. [Google Scholar] [CrossRef]
- Gui, J.; Cai, F. Coverage probability and throughput optimization in integrated mmwave and sub-6 ghz multi-uav-assisted disaster relief networks. IEEE Trans. Mob. Comput. 2024, 23, 10918–10937. [Google Scholar] [CrossRef]
- Shi, K.; Peng, X.; Lu, H.; Zhu, Y.; Niu, Z. Application of social sensors in natural disasters emergency management: A review. IEEE Trans. Comput. Soc. Syst. 2023, 10, 3143–3158. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, W.; Quan, Y.; Bao, W.; Dauphin, G.; Song, Y.; Ren, A.; Xing, M. A two-step ensemble-based genetic algorithm for land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 409–418. [Google Scholar] [CrossRef]
- Hanh, N.T.; Binh, H.T.T.; Hoai, N.X.; Palaniswami, M.S. An efficient genetic algorithm for maximizing area coverage in wireless sensor networks. Inf. Sci. 2019, 488, 58–75. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, A. Leader prediction for multiobjective particle swarm optimization. IEEE Trans. Evol. Comput. 2024, 29, 1356–1370. [Google Scholar] [CrossRef]
- Bonnah, E.; Ju, S.; Cai, W. Coverage maximization in wireless sensor networks using minimal exposure path and particle swarm optimization. Sens. Imaging 2020, 21, 4. [Google Scholar] [CrossRef]
- He, Y.; Huang, J.; Li, W.; Zhang, L.; Wong, S.-W.; Chen, Z.N. Hybrid method of artificial neural network and simulated annealing algorithm for optimizing wideband patch antennas. IEEE Trans. Antennas Propag. 2024, 72, 944–949. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Y.; Xie, Y.; Ma, Q.; Zhang, Z. Multiregion mission planning by satellite swarm using simulated annealing and neighborhood search. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 1416–1439. [Google Scholar] [CrossRef]
- Dai, L.-L.; Pan, Q.-K.; Miao, Z.-H.; Suganthan, P.N.; Gao, K.-Z. Multi-objective multi-picking-robot task allocation: Mathematical model and discrete artificial bee colony algorithm. IEEE Trans. OnIntelligent Transp. Syst. 2024, 25, 6061–6073. [Google Scholar] [CrossRef]
- Xie, X.; Yan, Z.; Zhang, Z.; Qin, Y.; Jin, H.; Xu, M. Hybrid genetic ant colony optimization algorithm for full-coverage path planning of gardening pruning robots. Intell. Serv. Robot. 2024, 17, 661–683. [Google Scholar] [CrossRef]
- Aga, R.S.; Duncan, L.; Davidson, L.; Ouchen, F.; Aga, R.; Heckman, E.M.; Bartsch, C.M. Design and fabrication of a metal resistance strain sensor with enhanced sensitivity. IEEE Sens. Lett. 2024, 8, 2504004. [Google Scholar] [CrossRef]
- Zhou, X.; Rao, W.; Liu, Y.; Sun, S. A decentralized optimization algorithm for multi-agent job shop scheduling with private information. Mathematics 2024, 12, 971. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, S.; Li, F.; Trajanovski, S.; Zhou, P.; Hui, P.; Fu, X. Video content placement at the network edge: Centralized and distributed algorithms. IEEE Trans. Mob. Comput. 2023, 22, 6843–6859. [Google Scholar] [CrossRef]
- Luo, C.; Xing, W.; Cai, S.; Hu, C. Nusc: An effective local search algorithm for solving the set covering problem. IEEE Trans. OnCybernetics 2024, 54, 1403–1416. [Google Scholar] [CrossRef]
- Seyedkolaei, A.A.; Nasseri, S.H. Facilities location in the supply chain network using an iterated local search algorithm. Fuzzy Inf. Eng. 2023, 15, 14–25. [Google Scholar] [CrossRef]
- Zeng, L.; Chiang, H.-D.; Liang, D.; Xia, M.; Dong, N. Trust-tech source-point method for systematically computing multiple local optimal solutions: Theory and method. IEEE Trans. Cybern. 2022, 52, 11686–11697. [Google Scholar] [CrossRef]
- Guo, C.; Song, Y. Multi-subject decision-making analysis in the public opinion of emergencies: From an evolutionary game perspective. Mathematics 2025, 13, 1547. [Google Scholar] [CrossRef]
- Liu, S.; Li, L.; Zhang, L.; Shen, W. Game theory based dynamic event-driven service scheduling in cloud manufacturing. IEEE Trans. Autom. Sci. Eng. 2024, 21, 618–629. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiang, Z. Nash equilibrium solutions for switched nonlinear systems: A fuzzy-based dynamic game method. IEEE Trans. Fuzzy Syst. 2025, 33, 2006–2015. [Google Scholar] [CrossRef]
- Varga, B.; Inga, J.; Hohmann, S. Limited information shared control: A potential game approach. IEEE Trans. Hum.-Mach. Syst. 2023, 53, 282–292. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Tan, S.; Liu, Y. A timestamp-based log-linear algorithm for solving locally-informed multi-agent finite games. Expert Syst. Appl. 2024, 249, 123677. [Google Scholar] [CrossRef]
- Yan, K.; Xiang, L.; Yang, K. Cooperative target search algorithm for uav swarms with limited communication and energy capacity. IEEE Commun. Lett. 2024, 28, 1102–1106. [Google Scholar] [CrossRef]
- Dumitrescu, R.; Leutscher, M.; Tankov, P. Linear programming fictitious play algorithm for mean field games with optimal stopping and absorption. ESAIM: Math. Model. Numer. Anal. 2023, 57, 953–990. [Google Scholar] [CrossRef]
- Monderer, D.; Shapley, L.S. Potential games. Games Econ. 1996, 14, 124–143. [Google Scholar] [CrossRef]
- Nash, J.F., Jr. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [Google Scholar] [CrossRef]
- Thiran, G.; Stupia, I.; Vandendorpe, L. Best response dynamics convergence for generalized nash equilibrium problems: An opportunity for autonomous multiple access design in federated learning. IEEE Internet Things J. 2024, 11, 18463–18482. [Google Scholar] [CrossRef]
- Kim, Y.; Khir, R.; Lee, S. Enhancing genetic algorithm with explainable artificial intelligence for last-mile routing. IEEE Trans. Evolutionary Comput. 2025, 1–17. [Google Scholar] [CrossRef]
Algorithm Comparison | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DFP | GA | LLL | BR | FP | DFP | GA | LLL | BR | FP | DFP | GA | LLL | BR | FP | DFP | GA | LLL | BR | FP | |
279.7 | 278.8 | 278.1 | 276.9 | 276.8 | 282.2 | 282.2 | 281.8 | 281.4 | 281.4 | 0.80 | 0.96 | 1.35 | 0.88 | 0.85 | 0.006 | 0.591 | 0.469 | 0.010 | 0.004 | |
555.2 | 553.9 | 553.0 | 552.7 | 551.8 | 558.0 | 558.0 | 557.4 | 557.0 | 557.0 | 1.24 | 1.51 | 1.88 | 1.34 | 1.30 | 0.004 | 0.590 | 0.469 | 0.009 | 0.003 | |
785.2 | 783.7 | 782.6 | 781.6 | 781.5 | 789.6 | 789.6 | 788.6 | 788.0 | 788.0 | 1.88 | 2.33 | 2.70 | 1.99 | 1.95 | 0.003 | 0.591 | 0.468 | 0.009 | 0.002 | |
1018.1 | 1016.9 | 1016.0 | 1014.5 | 1014.4 | 1023.0 | 1023.0 | 1023.0 | 1022.4 | 1022.4 | 1.62 | 1.90 | 2.31 | 1.72 | 1.68 | 0.006 | 1.476 | 1.171 | 0.024 | 0.004 | |
1824.2 | 1822.4 | 1821.1 | 1819.6 | 1819.5 | 1829.2 | 1829.2 | 1828.4 | 1827.6 | 1827.6 | 1.88 | 2.27 | 2.73 | 1.98 | 1.93 | 0.005 | 1.477 | 1.171 | 0.024 | 0.003 | |
2271.5 | 2269.7 | 2268.2 | 2267.0 | 2266.8 | 2276.6 | 2276.6 | 2276.0 | 2275.4 | 2275.4 | 2.21 | 2.75 | 3.15 | 2.32 | 2.26 | 0.004 | 1.475 | 1.170 | 0.023 | 0.002 | |
3220.2 | 3218.8 | 3217.8 | 3216.1 | 3215.9 | 3226.6 | 3225.8 | 3225.8 | 3225.0 | 3225.0 | 1.70 | 2.18 | 2.65 | 1.81 | 1.75 | 0.006 | 2.951 | 2.341 | 0.047 | 0.004 | |
4008.8 | 4006.0 | 4005.4 | 4003.0 | 4002.9 | 4016.6 | 4015.6 | 4015.6 | 4014.8 | 4014.8 | 1.94 | 2.49 | 3.04 | 2.06 | 2.00 | 0.006 | 2.950 | 2.340 | 0.047 | 0.004 | |
5070.2 | 5069.9 | 5066.1 | 5063.9 | 5063.8 | 5078.0 | 5078.0 | 5077.2 | 5076.4 | 5076.4 | 2.23 | 2.84 | 3.40 | 2.38 | 2.30 | 0.005 | 2.950 | 2.340 | 0.047 | 0.003 | |
8433.7 | 8430.4 | 8428.0 | 8425.3 | 8425.2 | 8441.2 | 8438.6 | 8437.0 | 8436.2 | 8436.2 | 2.23 | 2.78 | 3.30 | 2.35 | 2.29 | 0.007 | 5.896 | 4.678 | 0.094 | 0.005 | |
9850.3 | 9848.3 | 9846.8 | 9844.1 | 9843.91 | 9860.2 | 9859.0 | 9858.2 | 9857.4 | 9857.4 | 2.52 | 4.10 | 3.75 | 2.62 | 2.57 | 0.006 | 5.896 | 4.677 | 0.094 | 0.004 | |
11,429.5 | 11,427.0 | 11,424.8 | 11,422.2 | 11,422.0 | 11,440.8 | 11,438.8 | 11,437.4 | 11,436.6 | 11,436.6 | 2.87 | 3.51 | 4.24 | 2.98 | 2.92 | 0.005 | 5.895 | 4.675 | 0.093 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Chen, J.; Dong, R.; Xiong, X.; Xu, S. Toward a Distributed Potential Game Optimization to Sensor Area Coverage Problem. Mathematics 2025, 13, 2709. https://doi.org/10.3390/math13172709
Huang J, Chen J, Dong R, Xiong X, Xu S. Toward a Distributed Potential Game Optimization to Sensor Area Coverage Problem. Mathematics. 2025; 13(17):2709. https://doi.org/10.3390/math13172709
Chicago/Turabian StyleHuang, Jun, Jie Chen, Rongcheng Dong, Xinli Xiong, and Simao Xu. 2025. "Toward a Distributed Potential Game Optimization to Sensor Area Coverage Problem" Mathematics 13, no. 17: 2709. https://doi.org/10.3390/math13172709
APA StyleHuang, J., Chen, J., Dong, R., Xiong, X., & Xu, S. (2025). Toward a Distributed Potential Game Optimization to Sensor Area Coverage Problem. Mathematics, 13(17), 2709. https://doi.org/10.3390/math13172709