Dynamic Portfolio Optimization Using Information from a Crisis Indicator
Abstract
1. Introduction
2. Model Formulation
2.1. Model Dynamics
2.2. Existence of a Strong Solution for the Model
3. Optimization Problem and Solution
3.1. Optimization Problem
3.2. Optimal Solution
4. Numerical Examples
4.1. Fitting the Model for the Market Indicator
4.1.1. Parameter Estimation
4.1.2. Goodness of Fit
4.2. Fitting the Model for the Risky Asset
4.2.1. Parameter Estimation
4.2.2. Goodness of Fit Comparison
4.3. Strategy Performance Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Solution of the Riccati ODE (Lemma A1)
- (i)
- if , , ;
- (ii)
- if , ;
- (iii)
- if , unless ;
- (iv)
- if , .
References
- Merton, R.C. Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case. Rev. Econ. Stat. 1969, 51, 247–257. [Google Scholar] [CrossRef]
- Hauptmann, J.; Hoppenkamps, A.; Min, A.; Ramsauer, F.; Zagst, R. Forecasting Market Turbulence Using Regime-Switching Models. Financ. Mark. Portf. Manag. 2014, 28, 139–164. [Google Scholar] [CrossRef]
- Dua, P.; Tuteja, D. Regime Shifts in the Behaviour of International Currency and Equity Markets: A Markov-Switching Analysis. J. Quant. Econ. 2021, 19, 309–336. [Google Scholar] [CrossRef]
- Bäuerle, N.; Rieder, U. Portfolio Optimization with Markov-Modulated Stock Prices and Interest Rates. IEEE Trans. Autom. Control 2004, 49, 442–447. [Google Scholar] [CrossRef]
- Sotomayor, L.R.; Cadenillas, A. Explicit Solutions of Consumption-Investment Problems in Financial Markets with Regime Switching. Math. Financ. 2009, 19, 251–279. [Google Scholar] [CrossRef]
- Nystrup, P.; Madsen, H.; Lindström, E. Dynamic Portfolio Optimization Across Hidden Market Regimes. Quant. Financ. 2018, 18, 83–95. [Google Scholar] [CrossRef]
- Capponi, A.; Figueroa-Lopez, J.E. Dynamic Portfolio Optimization with a Defaultable Security and Regime-Switching. Math. Financ. 2014, 24, 207–249. [Google Scholar] [CrossRef]
- Ernst, C.; Grossmann, M.; Höcht, S.; Minden, S.; Scherer, S.; Zagst, R. Portfolio Selection under Changing Market Conditions. Int. J. Financ. Serv. Manag. 2009, 4, 48–63. [Google Scholar] [CrossRef]
- Kritzman, M.; Page, M.; Turkington, D. Regime Shifts: Implications for Dynamic Strategies (corrected). Financ. Anal. J. 2018, 68, 22–39. [Google Scholar] [CrossRef]
- Ang, A.; Timmermann, A. Regime Changes and Financial Markets. Annu. Rev. Financ. Econ. 2012, 4, 313–337. [Google Scholar] [CrossRef]
- Chen, J.; Tsang, E.P.K. Classification of Normal and Abnormal Regimes in Financial Markets. Algorithms 2018, 11, 202. [Google Scholar] [CrossRef]
- Trybuła, J.; Zawisza, D. Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences—Stochastic Factor Case. Math. Oper. Res. 2019, 44, 966–987. [Google Scholar] [CrossRef]
- Fouque, J.-P.; Hu, R.; Sircar, R. Sub- and Supersolution Approach to Accuracy Analysis of Portfolio Optimization Asymptotics in Multiscale Stochastic Factor Markets. SIAM J. Financ. Math. 2022, 13, 109–128. [Google Scholar] [CrossRef]
- Hata, H.; Sekine, J. Risk-Sensitive Asset Management under a Wishart Autoregressive Factor Model. J. Math. Financ. 2013, 3, 222–229. [Google Scholar] [CrossRef]
- Bäuerle, N.; Li, Z. Optimal Portfolios for Financial Markets with Wishart Volatility. J. Appl. Probab. 2013, 50, 1025–1043. [Google Scholar] [CrossRef]
- Kallsen, J.; Muhle-Karbe, J. Utility Maximization in Affine Stochastic Volatility Models. Int. J. Theor. Appl. Financ. 2010, 13, 459–477. [Google Scholar] [CrossRef]
- Liu, J. Portfolio Selection in Stochastic Environments. Rev. Financ. Stud. 2007, 20, 1–39. [Google Scholar] [CrossRef]
- Kraft, H. Optimal Portfolios and Heston’s Stochastic Volatility Model: An Explicit Solution for Power Utility. Quant. Financ. 2005, 5, 303–313. [Google Scholar] [CrossRef]
- Escobar, M.; Neykova, D.; Zagst, R. Portfolio Optimization in Affine Models with Markov Switching. Int. J. Theor. Appl. Financ. 2015, 18, 1550030. [Google Scholar] [CrossRef]
- Escobar, M.; Neykova, D.; Zagst, R. HARA Utility Maximization in a Markov-Switching Bond-Stock Market. Quant. Financ. 2017, 17, 1715–1733. [Google Scholar] [CrossRef]
- Black, F.; Jones, R.W. Simplifying Portfolio Insurance. J. Portf. Manag. 1987, 14, 48–51. [Google Scholar] [CrossRef]
- Perold, A.F. Constant Proportion Portfolio Insurance; Harvard Business School: Boston, MA, USA, 1986. [Google Scholar]
- Zagst, R. Interest-Rate Management; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Yamada, S.; Watanabe, T. On the Uniqueness of Solutions of Stochastic Differential Equations. J. Math. Kyoto Univ. 1971, 11, 155–167. [Google Scholar] [CrossRef]
- Kunze, M. Stochastic Differential Equations; Lecture Notes from the University of Ulm; University of Ulm: Ulm, Germany, 2012. [Google Scholar]
- Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Brigo, D.; Mercurio, F. Interest Rate Models—Theory and Practice. With Smile, Inflation and Credit, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Yamada, S.; Watanabe, T. On the Uniqueness of Solutions of Stochastic Differential Equations II. J. Math. Kyoto Univ. 1971, 11, 553–563. [Google Scholar] [CrossRef]
- Merton, R.C. Optimum Consumption and Portfolio Rules in a Continuous-Time Model. J. Econ. Theory 1971, 3, 373–413. [Google Scholar] [CrossRef]
- Guidoum, A.C.; Boukhetala, K. Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc. J. Stat. Softw. 2020, 96, 1–82. [Google Scholar] [CrossRef]
- Guidoum, A.C.; Boukhetala, K. Parametric Estimation of 1-D Stochastic Differential Equation. cran.r-project. Available online: https://cran.r-project.org/web/packages/Sim.DiffProc/vignettes/fitsde.html (accessed on 15 August 2025).
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. R package version 8.17.0. 2022. Available online: https://pkg.robjhyndman.com/forecast/ (accessed on 15 August 2025).
- Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar] [CrossRef]
- Frahm, G. An Intersection–Union Test for the Sharpe Ratio. Risks 2018, 6, 40. [Google Scholar] [CrossRef]
- Memmel, C. Performance Hypothesis Testing with the Sharpe Ratio. Financ. Lett. 2003, 1, 21–23. [Google Scholar]
- Neykova, D. Optimal Investment Strategies Under Affine Markov-Switching Models—Theory, Examples and Implementation. Ph.D. Thesis, Mathematics, Technical University of Munich, Munich, Germany, 2015. [Google Scholar]
- Kallsen, J.; Muhle-Karbe, J. Exponentially Affine Martingales, Affine Measure Changes and Exponential Moments of Affine Processes. Stoch. Processes Their Appl. 2010, 120, 163–181. [Google Scholar] [CrossRef]
Indicator | Indicator | BS | Indicator | Indicator | BS | ||
---|---|---|---|---|---|---|---|
F = 0 | SR | 0.7399 | 0.7476 | 0.6768 | 0.7413 | 0.7485 | 0.6792 |
ASR | 0.5842 | 0.5862 | 0.5282 | 0.5847 | 0.5864 | 0.5286 | |
Omega | 1.2887 | 1.2942 | 1.2888 | 1.2893 | 1.2946 | 1.2901 | |
max DD | 10.7123% | 15.4132% | 8.4722% | 19.049% | 26.8999% | 15.1908% | |
F = 60 | SR | 0.7174 | 0.715 | 0.6657 | 0.7054 | 0.6959 | 0.666 |
ASR | 0.5873 | 0.5875 | 0.5318 | 0.5855 | 0.5791 | 0.5358 | |
Omega | 1.281 | 1.2841 | 1.2823 | 1.278 | 1.2793 | 1.2821 | |
max DD | 5.3968% | 8.2812% | 4.0223% | 10.5296% | 16.284% | 7.6635% | |
F = 80 | SR | 0.7046 | 0.6966 | 0.6563 | 0.6847 | 0.662 | 0.6579 |
ASR | 0.5838 | 0.5792 | 0.5312 | 0.5761 | 0.5557 | 0.5368 | |
Omega | 1.2766 | 1.2785 | 1.2773 | 1.2719 | 1.27 | 1.2777 | |
max DD | 3.2995% | 5.2187% | 2.397% | 6.7278% | 10.8841% | 4.7016% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalo, V.; Wahl, M.; Zagst, R. Dynamic Portfolio Optimization Using Information from a Crisis Indicator. Mathematics 2025, 13, 2664. https://doi.org/10.3390/math13162664
Gonzalo V, Wahl M, Zagst R. Dynamic Portfolio Optimization Using Information from a Crisis Indicator. Mathematics. 2025; 13(16):2664. https://doi.org/10.3390/math13162664
Chicago/Turabian StyleGonzalo, Victor, Markus Wahl, and Rudi Zagst. 2025. "Dynamic Portfolio Optimization Using Information from a Crisis Indicator" Mathematics 13, no. 16: 2664. https://doi.org/10.3390/math13162664
APA StyleGonzalo, V., Wahl, M., & Zagst, R. (2025). Dynamic Portfolio Optimization Using Information from a Crisis Indicator. Mathematics, 13(16), 2664. https://doi.org/10.3390/math13162664