Asymptotic Analysis of a Kernel-Type Estimator for Parabolic Stochastic Partial Differential Equations Driven by Cylindrical Sub-Fractional Brownian Motion
Abstract
1. Introduction
2. Preliminaries and Model Assumptions
- (1)
- and ;
- (2)
- is self-similar
- (3)
- The process is not Markov and it is not a semi-martingale;
- (4)
- The process has continuous sample paths almost surely and, for each and , there exists a random variable such that
- (5)
- Second moment of increments for any
- (H1)
- There exists a complete orthonormal system in such that
- (H2)
- The eigenvalues and satisfy and uniformly in
- (P1)
- For all
- (P2)
- There exist for all and ,
3. Main Results
3.1. Asymptotic Mean Square Error
- (H3)
- when is large;
- (H4)
- (H5)
- for and
- (H.3)’
- There exists a sequence of positive real numbers such that tends to zero when n tends to infinity, and
- (A1)
- The orders of the operators and satisfy
- (A2)
- The eigenvalues of are such that ;
- (A3)
- and ;
- (A4)
- The initial condition is deterministic and belongs to for some .Then, for we have
3.2. Asymptotic Normality
- (A5)
- .
3.3. Confidence Interval
4. The Bandwidth Selection Criterion
5. Concluding Remarks
6. Proofs
7. Illustrative Examples
7.1. Example 1: Second-Order SPDE
7.1.1. Spectral Decomposition
7.1.2. Kernel-Based Estimation
7.1.3. Asymptotic Behavior
7.2. Example 2: Fourth-Order SPDE
7.2.1. Spectral Decomposition
7.2.2. Kernel-Based Estimation
7.2.3. Asymptotic Behavior
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Admissibility Conditions on the Function f
- Local integrability near . The integrand contains the factor , and hence it is necessary that
- Control of the singularity as . The kernel behaves like , which becomes singular near for . One must therefore ensure
- Sufficient global condition. A practical sufficient condition ensuring the well-posedness of the integral is
References
- Dawson, D.A. Qualitative behavior of geostochastic systems. Stoch. Process. Appl. 1980, 10, 1–31. [Google Scholar] [CrossRef]
- De, S.S. Stochastic model of population growth and spread. Bull. Math. Biol. 1987, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1992; Volume 44, p. xviii+454. [Google Scholar] [CrossRef]
- Mann, J.A.j.; Woyczynski, W.A. Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys. A 2001, 291, 159–183. [Google Scholar] [CrossRef]
- Cialenco, I. Statistical inference for SPDEs: An overview. Stat. Inference Stoch. Process. 2018, 21, 309–329. [Google Scholar] [CrossRef]
- Rozovskiĭ, B.L. Stochastic Evolution Systems; Linear theory and applications to nonlinear filtering, Translated from the Russian by A. Yarkho; Mathematics and Its Applications (Soviet Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1990; Volume 35, p. xviii+315. [Google Scholar] [CrossRef]
- Chow, P.L. Stochastic Partial Differential Equations, 2nd ed.; Advances in Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2015; p. xvi+317. [Google Scholar] [CrossRef]
- Hairer, M. An Introduction to Stochastic PDEs. arXiv 2023, arXiv:0907.4178. [Google Scholar] [CrossRef]
- Lototsky, S.V.; Rozovsky, B.L. Stochastic Partial Differential Equations; Universitext; Springer: Cham, Switzerland, 2017; p. xiv+508. [Google Scholar] [CrossRef]
- Meng, P.; Xu, Z.; Wang, X.; Yin, W.; Liu, H. A novel method for solving the inverse spectral problem with incomplete data. J. Comput. Appl. Math. 2025, 463, 116525. [Google Scholar] [CrossRef]
- Yang, X.; Meng, P.; Jiang, Z.; Zhou, L. Deep siamese residual support vector machine with applications to disease prediction. Comput. Biol. Med. 2025, 196, 110693. [Google Scholar] [CrossRef]
- Huebner, M.; Rozovskiĭ, B.L. On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE’s. Probab. Theory Relat. Fields 1995, 103, 143–163. [Google Scholar] [CrossRef]
- Rao, B.L.S.P. Parametric Estimation for Processes Driven by Infinite Dimensional Mixed Fractional Brownian Motion. arXiv 2021, arXiv:2103.05264. [Google Scholar] [CrossRef]
- Piterbarg, L.; Rozovskii, B. On asymptotic problems of parameter estimation in stochastic PDE’s: Discrete time sampling. Math. Methods Statist. 1997, 6, 200–223. [Google Scholar]
- Hildebrandt, F.; Trabs, M. Parameter estimation for SPDEs based on discrete observations in time and space. Electron. J. Stat. 2021, 15, 2716–2776. [Google Scholar] [CrossRef]
- Lototsky, S.V.; Rosovskii, B.L. Spectral asymptotics of some functionals arising in statistical inference for SPDEs. Stoch. Process. Appl. 1999, 79, 69–94. [Google Scholar] [CrossRef]
- Ibragimov, I.; Khasminskii, R. Some Nonparametric Estimation Problems for Parabolic Spde; Technical Report 31; Wayne State University, Department of Mathematics: Detroit, MI, USA, 1997. [Google Scholar]
- Huebner, M.; Lototsky, S. Asymptotic analysis of a kernel estimator for parabolic SPDE’s with time-dependent coefficients. Ann. Appl. Probab. 2000, 10, 1246–1258. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, Y. Asymptotic analysis of a kernel estimator for parabolic stochastic partial differential equations driven by fractional noises. Front. Math. China 2018, 13, 187–201. [Google Scholar] [CrossRef]
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A. Sub-fractional Brownian motion and its relation to occupation times. Statist. Probab. Lett. 2004, 69, 405–419. [Google Scholar] [CrossRef]
- Nualart, D. The Malliavin Calculus and Related Topics, 2nd ed.; Probability and its Applications (New York); Springer: Berlin, Germany, 2006; p. xiv+382. [Google Scholar] [CrossRef]
- Samorodnitsky, G.; Taqqu, M.S. Stable Non-Gaussian Random Processes; Stochastic Models with Infinite Variance; Stochastic Modeling; Chapman & Hall: New York, NY, USA, 1994; p. xxii+632. [Google Scholar]
- Dzhaparidze, K.; van Zanten, H. A series expansion of fractional Brownian motion. Probab. Theory Relat. Fields 2004, 130, 39–55. [Google Scholar] [CrossRef]
- Tudor, C. On the Wiener integral with respect to a sub-fractional Brownian motion on an interval. J. Math. Anal. Appl. 2009, 351, 456–468. [Google Scholar] [CrossRef]
- Tudor, C. Prediction and linear filtering with sub-fractional Brownian motion. preprint 2007. [Google Scholar]
- Diedhiou, A.; Manga, C.; Mendy, I. Parametric estimation for SDEs with additive sub-fractional Brownian motion. J. Numer. Math. Stoch. 2011, 3, 37–45. [Google Scholar]
- Pipiras, V.; Taqqu, M.S. Integration questions related to fractional Brownian motion. Probab. Theory Relat. Fields 2000, 118, 251–291. [Google Scholar] [CrossRef]
- Jolis, M. On the Wiener integral with respect to the fractional Brownian motion on an interval. J. Math. Anal. Appl. 2007, 330, 1115–1127. [Google Scholar] [CrossRef]
- Lei, P.; Nualart, D. A decomposition of the bifractional Brownian motion and some applications. Statist. Probab. Lett. 2009, 79, 619–624. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, X.; Zuo, Y. Least squares estimation for the drift parameters in the sub-fractional Vasicek processes. J. Statist. Plann. Inference 2018, 197, 141–155. [Google Scholar] [CrossRef]
- Mendy, I. Parametric estimation for sub-fractional Ornstein-Uhlenbeck process. J. Statist. Plann. Inference 2013, 143, 663–674. [Google Scholar] [CrossRef]
- Piterbarg, L.; Rozovskii, B. Maximum likelihood estimators in the equations of physical oceanography. In Stochastic Modelling in Physical Oceanography; Birkhäuser: Boston, MA, USA, 1996; Volume 39, pp. 397–421. [Google Scholar] [CrossRef]
- Safarov, Y.; Vassiliev, D. The Asymptotic Distribution of Eigenvalues of Partial Differential Operators; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1997; Volume 155, p. xiv+354. [Google Scholar] [CrossRef]
- Rozovskiı, B. Stochastic evolution systems, volume 35 of Mathematics and its Applications (Soviet Series). In Linear Theory and Applications to Nonlinear Filtering; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Tindel, S.; Tudor, C.; Viens, F. Stochastic evolution equations with fractional Brownian motion. Probab. Theory Relat. Fields 2003, 127, 186–204. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, G.; Luo, J. Stochastic delay evolution equations driven by sub-fractional Brownian motion. Adv. Differ. Equ. 2015, 2015, 48. [Google Scholar] [CrossRef]
- León, J.A.; Tindel, S. Malliavin calculus for fractional delay equations. J. Theoret. Probab. 2012, 25, 854–889. [Google Scholar] [CrossRef]
- Devroye, L. A Course in Density Estimation; Progress in Probability and Statistics; Birkhäuser Boston, Inc.: Boston, MA, USA, 1987; Volume 14, p. xx+183. [Google Scholar]
- Müller, H.G. Smooth optimum kernel estimators of densities, regression curves and modes. Ann. Statist. 1984, 12, 766–774. [Google Scholar] [CrossRef]
- Liu, J.; Tang, D.; Cang, Y. Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus. Comm. Statist. Theory Methods 2017, 46, 3276–3289. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Mishura, Y.S. Stochastic Calculus for Fractional Brownian Motion and Related Processes; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2008; Volume 1929, p. xviii+393. [Google Scholar] [CrossRef]
- Gubinelli, M. Controlling rough paths. J. Funct. Anal. 2004, 216, 86–140. [Google Scholar] [CrossRef]
- Hairer, M. A theory of regularity structures. Invent. Math. 2014, 198, 269–504. [Google Scholar] [CrossRef]
- Nourdin, I.; Simon, T. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 2006, 76, 907–912. [Google Scholar] [CrossRef]
- Nourdin, I. A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one. In Séminaire de Probabilités XLI; Springer: Berlin, Germany, 2008; Volume 1934, pp. 181–197. [Google Scholar] [CrossRef]
- Neuenkirch, A.; Nourdin, I. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fractional Brownian motion. J. Theoret. Probab. 2007, 20, 871–899. [Google Scholar] [CrossRef]
- Devroye, L.; Lugosi, G. Combinatorial Methods in Density Estimation; Springer Series in Statistics; Springer: New York, NY, USA, 2001; p. xii+208. [Google Scholar]
- Watson, G.S.; Leadbetter, M.R. On the estimation of the probability density. I. Ann. Math. Statist. 1963, 34, 480–491. [Google Scholar] [CrossRef]
- Epsnečnikov, V.A. Nonparametric estimation of a multidimensional probability density. Teor. Verojatnost. I Primenen. 1969, 14, 156–162. [Google Scholar] [CrossRef]
- Deheuvels, P. Estimation non paramétrique de la densité par histogrammes généralisés. II. In Annales de l’ISUP; Publications of the Institute of Statistics of the University of Paris: Paris, France, 1977; Volume 22, pp. 1–23. [Google Scholar]
- Hall, P. Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function. Z. Wahrsch. Verw. Geb. 1984, 67, 175–196. [Google Scholar] [CrossRef]
- Bouzebda, S.; Taachouche, N. Multivariate spatial conditional U-quantiles: A Bahadur–Kiefer representation. Results Appl. Math. 2025, 26, 100593. [Google Scholar] [CrossRef]
- Bouzebda, S.; Taachouche, N. Nonparametric conditional U-statistics on Lie groups with measurement errors. J. Complex. 2025, 89, 101944. [Google Scholar] [CrossRef]
- Bouzebda, S.; Taachouche, N. Oracle inequalities and upper bounds for kernel conditional U-statistics estimators on manifolds and more general metric spaces associated with operators. Stochastics 2024, 96, 2135–2198. [Google Scholar] [CrossRef]
- Bouzebda, S.; Taachouche, N. On the variable bandwidth kernel estimation of conditional U-statistics at optimal rates in sup-norm. Phys. A 2023, 625, 129000. [Google Scholar] [CrossRef]
- Mishura, Y.; Zili, M. Stochastic Analysis of Mixed Fractional Gaussian Processes; ISTE Press: London, UK; Elsevier Ltd.: Oxford, UK, 2018; p. xvi+194. [Google Scholar]
- Cialenco, I.; Lototsky, S.V. Parameter estimation in diagonalizable bilinear stochastic parabolic equations. Stat. Inference Stoch. Process. 2009, 12, 203–219. [Google Scholar] [CrossRef]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman Scientific & Technical: Harlow, UK; John Wiley & Sons: New York, NY, USA, 1994; Volume 301. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Translation from the Russian; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kober, H. On fractional integrals and derivatives. Quart. J. Math. Oxf. Ser. 1940, 11, 193–211. [Google Scholar] [CrossRef]
- Erdélyi, A. On fractional integration and its application to the theory of Hankel transforms. Quart. J. Math. Oxf. Ser. 1940, 11, 293–303. [Google Scholar] [CrossRef]
- Sneddon, I.N. The use in mathematical physics of Erdelyi-Kober operators and of some of their generalizations. In Fractional Calculus and Its Applications: Proceedings of the International Conference Held at the University of New Haven, June 1974; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975; Volume 457, pp. 37–79. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204, North-Holland Mathematics Studies; p. xvi+523. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keddi, A.; Bouzebda, S.; Madani, F. Asymptotic Analysis of a Kernel-Type Estimator for Parabolic Stochastic Partial Differential Equations Driven by Cylindrical Sub-Fractional Brownian Motion. Mathematics 2025, 13, 2627. https://doi.org/10.3390/math13162627
Keddi A, Bouzebda S, Madani F. Asymptotic Analysis of a Kernel-Type Estimator for Parabolic Stochastic Partial Differential Equations Driven by Cylindrical Sub-Fractional Brownian Motion. Mathematics. 2025; 13(16):2627. https://doi.org/10.3390/math13162627
Chicago/Turabian StyleKeddi, Abdelmalik, Salim Bouzebda, and Fethi Madani. 2025. "Asymptotic Analysis of a Kernel-Type Estimator for Parabolic Stochastic Partial Differential Equations Driven by Cylindrical Sub-Fractional Brownian Motion" Mathematics 13, no. 16: 2627. https://doi.org/10.3390/math13162627
APA StyleKeddi, A., Bouzebda, S., & Madani, F. (2025). Asymptotic Analysis of a Kernel-Type Estimator for Parabolic Stochastic Partial Differential Equations Driven by Cylindrical Sub-Fractional Brownian Motion. Mathematics, 13(16), 2627. https://doi.org/10.3390/math13162627