An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Flood Inundation Inventory
2.3. Factors Affecting Flood Susceptibility in Urban Environments
3. Methodology
3.1. Univariate- and Bivariate-Output AI Models
3.2. Convolutional Block Attention Module
3.3. Bayesian Optimization
3.4. Performance Evaluation
3.5. Importance of Predictor Variables
4. Results
4.1. Model Performance Evaluation
4.2. Flood Susceptibility and Depth Mapping
4.3. Variable Importance Assessment
5. Discussion
5.1. Implications of Attention and Bivariate-Output Learning
5.2. Capturing Complementary Aspects of Urban Flood Likelihood and Severity
5.3. Prioritizing Predictors for Future Dual-Output Flood Models
5.4. Implications of Flood Depth Prediction Under Constrained Input Conditions
5.5. Advantages of Joint Modeling of Flood Susceptibility and Depth
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ivanov, V.Y.; Tran, V.N.; Huang, W.; Murphy, K.; Daneshvar, F.; Bednar, J.H.; Alexander, G.A.; Kim, J.; Wright, D.B. Urban flooding is intensified by outdated design guidelines and a lack of a systems approach. Nat. Cities 2024, 1, 626–627. [Google Scholar] [CrossRef]
- Dhiman, R.; VishnuRadhan, R.; Eldho, T.I.; Inamdar, A. Flood risk and adaptation in Indian coastal cities: Recent scenarios. Appl. Water Sci. 2018, 9, 5. [Google Scholar] [CrossRef]
- Cherqui, F.; Belmeziti, A.; Granger, D.; Sourdril, A.; Le Gauffre, P. Assessing urban potential flooding risk and identifying effective risk-reduction measures. Sci. Total Environ. 2015, 514, 418–425. [Google Scholar] [CrossRef]
- Karamouz, M.; Hosseinpour, A.; Nazif, S. Improvement of Urban Drainage System Performance under Climate Change Impact: Case Study. J. Hydrol. Eng. 2011, 16, 395–412. [Google Scholar] [CrossRef]
- UN-Water. UN-Water, 2020. Water and Climate Change; United Nations World Water Development Report 2020; UNESCO: Paris, France, 2020. [Google Scholar]
- Mosavi, A.; Ozturk, P.; Chau, K.-w. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.J.; Vaze, J.; Croke, B.F.W.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Zhou, Q.; Teng, S.; Situ, Z.; Liao, X.; Feng, J.; Chen, G.; Zhang, J.; Lu, Z. A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions. Hydrol. Earth Syst. Sci. 2023, 27, 1791–1808. [Google Scholar] [CrossRef]
- Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. [Google Scholar] [CrossRef]
- Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [Google Scholar] [CrossRef]
- Kim, J.; Ivanov, V.Y.; Katopodes, N.D. Modeling erosion and sedimentation coupled with hydrological and overland flow processes at the watershed scale. Water Resour. Res. 2013, 49, 5134–5154. [Google Scholar] [CrossRef]
- Tran, V.N.; Ivanov, V.Y.; Nguyen, G.T.; Anh, T.N.; Nguyen, P.H.; Kim, D.-H.; Kim, J. A deep learning modeling framework with uncertainty quantification for inflow-outflow predictions for cascade reservoirs. J. Hydrol. 2024, 629, 130608. [Google Scholar] [CrossRef]
- Rosenzweig, B.R.; Herreros Cantis, P.; Kim, Y.; Cohn, A.; Grove, K.; Brock, J.; Yesuf, J.; Mistry, P.; Welty, C.; McPhearson, T.; et al. The Value of Urban Flood Modeling. Earth’s Future 2021, 9, e2020EF001739. [Google Scholar] [CrossRef]
- Arrighi, C.; Campo, L. Effects of digital terrain model uncertainties on high-resolution urban flood damage assessment. J. Flood Risk Manag. 2019, 12, e12530. [Google Scholar] [CrossRef]
- Rahmati, O.; Darabi, H.; Haghighi, A.T.; Stefanidis, S.; Kornejady, A.; Nalivan, O.A.; Tien Bui, D. Urban Flood Hazard Modeling Using Self-Organizing Map Neural Network. Water 2019, 11, 2370. [Google Scholar] [CrossRef]
- Apel, H.; Martínez Trepat, O.; Hung, N.N.; Chinh, D.T.; Merz, B.; Dung, N.V. Combined fluvial and pluvial urban flood hazard analysis: Concept development and application to Can Tho city, Mekong Delta, Vietnam. Nat. Hazards Earth Syst. Sci. 2016, 16, 941–961. [Google Scholar] [CrossRef]
- Tsakiris, G. Flood risk assessment: Concepts, modelling, applications. Nat. Hazards Earth Syst. Sci. 2014, 14, 1361–1369. [Google Scholar] [CrossRef]
- Tran, V.N.; Kim, J. UIDS: A Matlab-based urban flood model considering rainfall-induced and surcharge-induced inundations. Environ. Model. Softw. 2024, 179, 106132. [Google Scholar] [CrossRef]
- Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Bae, D.-H. Correcting mean areal precipitation forecasts to improve urban flooding predictions by using long short-term memory network. J. Hydrol. 2020, 584, 124710. [Google Scholar] [CrossRef]
- Tran, T.D.; Kim, J. Guidance on the construction and selection of relatively simple to complex data-driven models for multi-task streamflow forecasting. Stoch. Environ. Res. Risk Assess. 2024, 38, 3657–3675. [Google Scholar] [CrossRef]
- Tran, V.N.; Ivanov, V.Y.; Kim, J. Data reformation–A novel data processing technique enhancing machine learning applicability for predicting streamflow extremes. Adv. Water Resour. 2023, 182, 104569. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Cui, L.; Wang, J.; Zuo, D.; Peng, D. Improving urban flood susceptibility mapping using transfer learning. J. Hydrol. 2021, 602, 126777. [Google Scholar] [CrossRef]
- Lei, X.; Chen, W.; Panahi, M.; Falah, F.; Rahmati, O.; Uuemaa, E.; Kalantari, Z.; Ferreira, C.S.S.; Rezaie, F.; Tiefenbacher, J.P.; et al. Urban flood modeling using deep-learning approaches in Seoul, South Korea. J. Hydrol. 2021, 601, 126684. [Google Scholar] [CrossRef]
- Löwe, R.; Böhm, J.; Jensen, D.G.; Leandro, J.; Rasmussen, S.H. U-FLOOD—Topographic deep learning for predicting urban pluvial flood water depth. J. Hydrol. 2021, 603, 126898. [Google Scholar] [CrossRef]
- Jin, H.; Lu, H.; Zhao, Y.; Zhu, Z.; Yan, W.; Yang, Q.; Zhang, S. Integration of an improved transformer with physical models for the spatiotemporal simulation of urban flooding depths. J. Hydrol. Reg. Stud. 2024, 51, 101627. [Google Scholar] [CrossRef]
- Seleem, O.; Ayzel, G.; de Souza, A.C.T.; Bronstert, A.; Heistermann, M. Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany. Geomat. Nat. Hazards Risk 2022, 13, 1640–1662. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Chen, H.; Wang, Y.; Jia, Y.; Gui, G. Unet combined with attention mechanism method for extracting flood submerged range. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6588–6597. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Omai, L.; Prakash, S. Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learning: Overview and Case Study Application Using Multiparametric Spatial Data in Data-Scarce Urban Environments. Int. J. Intell. Syst. 2023, 2023, 5672401. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, M.; Li, J.; Zhang, D.; Muhammad Adnan Ikram, R.; Su, J.; Zhou, S.; Wang, Y.; Zhang, Q. Matrix scenario-based urban flooding damage prediction via convolutional neural network. J. Environ. Manag. 2024, 349, 119470. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, J.; Zhang, T.; Yu, T.; Chu, S. Advancing rapid urban flood prediction: A spatiotemporal deep learning approach with uneven rainfall and attention mechanism. J. Hydroinform. 2024, 26, 1409–1424. [Google Scholar] [CrossRef]
- Yoon, S.-S.; Park, M. Enhancing flood forecasting and warning precision through multi-task deep learning approaches. J. Hydroinform. 2024, 26, 3244–3265. [Google Scholar] [CrossRef]
- Pasupa, K.; Sunhem, W. A comparison between shallow and deep architecture classifiers on small dataset. In Proceedings of the 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 5–6 October 2016; pp. 1–6. [Google Scholar]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Pecheti, S.T.; Ashwaj, U.; Uthej, K.; Murali, K. A Deep Learning Framework for Comparative Analysis in Flood Detection and Area Estimation. Proceedings of 2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 6–8 March 2025; pp. 1–6. [Google Scholar]
- Kim, H.-S.; Chung, Y.-S.; Tans, P.P.; Yoon, M.-B. Climatological variability of air temperature and precipitation observed in South Korea for the last 50 years. Air Qual. Atmos. Health 2015, 9, 645–651. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.; Ji, J.; Lee, E.; Yi, S.; Yi, J. Flood Vulnerability Assessment of an Urban Area: A Case Study in Seoul, South Korea. Water 2023, 15, 1979. [Google Scholar] [CrossRef]
- Pour, S.H.; Wahab, A.K.A.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Kim, J.; Sung, H.H.; Choi, G. Spatial Patterns of Urban Flood Vulnerability in Seoul. J. Korean Assoc. Reg. Geogr. 2013, 19, 615–626. [Google Scholar]
- Hwang, K.; Schuetze, T.; Amoruso, F. Flood Resilient and Sustainable Urban Regeneration Using the Example of an Industrial Compound Conversion in Seoul, South Korea. Sustainability 2020, 12, 918. [Google Scholar] [CrossRef]
- Seo, Y.; Hwang, J.; Noh, S. Analysis of Urban Drainage Networks Using Gibbs’ Model: A Case Study in Seoul, South Korea. Water 2015, 7, 4129–4143. [Google Scholar] [CrossRef]
- Maharani, Z.; Kim, J.; Lim, J.H. A Comprehensive Study on Flood Mitigation Strategies of Low-Impact Development in Yeongdeungpo-gu, Seoul. J. Korean Inst. Landsc. Archit. 2024, 52, 83–95. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2013, 12, 14–29. [Google Scholar] [CrossRef]
- Sahoo, S.N.; Sreeja, P. Development of Flood Inundation Maps and Quantification of Flood Risk in an Urban Catchment of Brahmaputra River. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2017, 3, A4015001. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, Z.; Pang, B.; Tu, T.; Xu, L.; Du, L. An enhanced inundation method for urban flood hazard mapping at the large catchment scale. J. Hydrol. 2019, 571, 873–882. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Darabi, H.; Torabi Haghighi, A.; Rahmati, O.; Jalali Shahrood, A.; Rouzbeh, S.; Pradhan, B.; Tien Bui, D. A hybridized model based on neural network and swarm intelligence-grey wolf algorithm for spatial prediction of urban flood-inundation. J. Hydrol. 2021, 603, 126854. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, B.; Liu, Y.; Zhang, X.; Li, Z. Urban Flood Risk Assessment through the Integration of Natural and Human Resilience Based on Machine Learning Models. Remote Sens. 2023, 15, 3678. [Google Scholar] [CrossRef]
- Zhao, G.; Pang, B.; Xu, Z.; Peng, D.; Zuo, D. Urban flood susceptibility assessment based on convolutional neural networks. J. Hydrol. 2020, 590, 125235. [Google Scholar] [CrossRef]
- Khosravi, K.; Shahabi, H.; Pham, B.T.; Adamowski, J.; Shirzadi, A.; Pradhan, B.; Dou, J.; Ly, H.-B.; Gróf, G.; Ho, H.L.; et al. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. J. Hydrol. 2019, 573, 311–323. [Google Scholar] [CrossRef]
- Gumbo., B.; Munyamba., N.; Sithole., G.; Savenije, H.H.G. Coupling of digital elevation model and rainfall-runoff model in storm drainage network design. Phys. Chem. Earth 2022, 27, 755–764. [Google Scholar] [CrossRef]
- Seleem, O.; Heistermann, M.; Bronstert, A. Efficient Hazard Assessment for Pluvial Floods in Urban Environments: A Benchmarking Case Study for the City of Berlin, Germany. Water 2021, 13, 2476. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, B. An urban storm-inundation simulation method based on GIS. J. Hydrol. 2014, 517, 260–268. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.; Donald, P. A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. J. Appl. Meteorol. Climatol. 1994, 33, 140–158. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 2015, 31, 42–70. [Google Scholar] [CrossRef]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Regmi, A.D.; Devkota, K.C.; Yoshida, K.; Pradhan, B.; Pourghasemi, H.R.; Kumamoto, T.; Akgun, A. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab. J. Geosci. 2013, 7, 725–742. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Kirkby, M. Hydrograph modeling strategies. In Process in Physical and Human Geography; Pearson Education Limited: London, UK, 1975; pp. 69–90. [Google Scholar]
- Wilson, J.P.; Gallant, J.C. Secondary Topographic Attributes. In Terrain Analysis: Principles and Applications; John Wiley & Sons: New York, NY, USA, 2000; pp. 87–131. [Google Scholar]
- O’Neill, E.; Brereton, F.; Shahumyan, H.; Clinch, J.P. The Impact of Perceived Flood Exposure on Flood-Risk Perception: The Role of Distance. Risk Anal. 2016, 36, 2158–2186. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sinha, V.S.P.; Vijhani, A.; Pahuja, N. Vulnerability assessment of urban road network from urban flood. Int. J. Disaster Risk Reduct. 2018, 28, 237–250. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar] [CrossRef]
- Tran, T.D.; Kim, J. Machine learning modeling structures and framework for short-term forecasting and long-term projection of Streamflow. Stoch. Environ. Res. Risk Assess. 2023, 38, 793–813. [Google Scholar] [CrossRef]
- Passos, D.; Mishra, P. An automated deep learning pipeline based on advanced optimisations for leveraging spectral classification modelling. Chemom. Intell. Lab. Syst. 2021, 215, 104354. [Google Scholar] [CrossRef]
- Sahraei, A.; Houska, T.; Breuer, L. Deep Learning for Isotope Hydrology: The Application of Long Short-Term Memory to Estimate High Temporal Resolution of the Stable Isotope Concentrations in Stream and Groundwater. Front. Water 2021, 3, 740044. [Google Scholar] [CrossRef]
- He, M.; Sandhu, P.; Namadi, P.; Reyes, E.; Guivetchi, K.; Chung, F. Protocols for Water and Environmental Modeling Using Machine Learning in California. Hydrology 2025, 12, 59. [Google Scholar] [CrossRef]
- Cheng, H.; Zourlidou, S.; Sester, M. Traffic Control Recognition with Speed-Profiles: A Deep Learning Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 652. [Google Scholar] [CrossRef]
- Yesilnacar, E.K. The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey; University of Melbourne: Parkville, Australia, 2005; p. 200. [Google Scholar]
- Williamson, B.D.; Gilbert, P.B.; Carone, M.; Simon, N. Nonparametric variable importance assessment using machine learning techniques. Biometrics 2021, 77, 9–22. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Advances in neural in-formation processing systems. arXiv 2017, arXiv:1705.07874. [Google Scholar]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol. 2020, 582, 124482. [Google Scholar] [CrossRef]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Rahman, M.; Ningsheng, C.; Islam, M.M.; Dewan, A.; Iqbal, J.; Washakh, R.M.A.; Shufeng, T. Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-criteria Decision Analysis. Earth Syst. Environ. 2019, 3, 585–601. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat. Nat. Hazards Risk 2017, 8, 1185–1203. [Google Scholar] [CrossRef]
- Jo, H. Is it a Disaster or Resources. The Hankyoreh. Available online: https://h21.hani.co.kr/arti/special/special_general/30216.html (accessed on 10 April 2025).
- Huang, H.; Chen, X.; Zhu, Z.; Xie, Y.; Liu, L.; Wang, X.; Wang, X.; Liu, K. The changing pattern of urban flooding in Guangzhou, China. Sci. Total Environ. 2018, 622–623, 394–401. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J. Environ. Manag. 2019, 247, 712–729. [Google Scholar] [CrossRef] [PubMed]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Jha, A.K.; Bloch, R.; Lamond, J. Cities and flooding: A Guide to Integrated Urban Flood Risk Management for the 21st Century; World Bank Publications: Washington, DC, USA, 2012. [Google Scholar]
- Palla, A.; Gnecco, I.; La Barbera, P. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale. J. Environ. Manag. 2017, 191, 297–305. [Google Scholar] [CrossRef] [PubMed]
Study | CNN Architecture | Flood Prediction Type | Task—Area of Application | Variable Importance Analysis |
---|---|---|---|---|
[25] | U-Net | Depth | Single—Urban | – |
[23] | LeNet-5 | Susceptibility | Single—Urban | – |
[27] | LeNet-5 | Susceptibility | Single—Urban | SHAP |
[28] | U-Net + CBAM | Submerged Range | Single—Lake | – |
[29] | Custom CNN | Susceptibility | Single—Urban | Gain Ratio Index |
[30] | Custom CNN | Depth | Single—Urban | – |
[26] | Custom CNN | Depth | Single—Urban | – |
[31] | U-Net + CBAM | Depth | Single—Urban | Replacement feature importance |
[32] | AutoML— generated CNN | Risk and Water Level | Multitask—River | – |
This Study | LeNet-5 + CBAM | Susceptibility and Depth | Multitask—Urban | SHAP |
Data | Data Source |
---|---|
DEM | National Science Foundation—NSF (https://opentopography.org/) |
DTRiver, DTRoad, DTDrainage | National Geographic Information Institute (https://www.ngii.go.kr/world/mapdownload01_en.html) (accessed on 6 November 2024) |
Flooding inventory | Seoul Metropolitan Government (https://data.seoul.go.kr/dataList/OA-15636/F/1/datasetView.do) (accessed on 18 October 2024) |
Model | Hyperparameters | ||||||
---|---|---|---|---|---|---|---|
Learning Rate | Dropout (Susceptibility) | Dropout (Depth) | Batch Size | Number of Epochs | FC Units (Susceptibility) | FC Units (Depth) | |
Le5S | 0.0004 | 0.4 | – | 16 | 80 | 64 | – |
Le5S_CBAM | 0.0004 | 0.4 | – | 64 | 60 | 64 | – |
Le5D | 0.0002 | – | 0.2 | 32 | 50 | – | 80 |
Le5D_CBAM | 0.0004 | – | 0.3 | 32 | 70 | – | 80 |
Le5SD | 0.0003 | 0.4 | 0.2 | 16 | 40 | 64 | 80 |
Le5SD_CBAM | 0.001 | 0.3 | 0.3 | 48 | 50 | 64 | 80 |
Model | Number of Parameters | Training Time [s] | Testing Time [s] |
---|---|---|---|
Le5S | 7847 | 57 | 0.09 |
Le5S_CBAM | 8210 | 117 | 0.20 |
Le5D | 8903 | 37 | 0.09 |
Le5D_CBAM | 9266 | 100 | 0.21 |
Le5SD | 13,128 | 64 | 0.11 |
Le5SD_CBAM | 13491 | 130 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.T.; Vo, T.Q.; Kim, J. An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth. Mathematics 2025, 13, 2617. https://doi.org/10.3390/math13162617
Le TT, Vo TQ, Kim J. An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth. Mathematics. 2025; 13(16):2617. https://doi.org/10.3390/math13162617
Chicago/Turabian StyleLe, Thuan Thanh, Tuong Quang Vo, and Jongho Kim. 2025. "An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth" Mathematics 13, no. 16: 2617. https://doi.org/10.3390/math13162617
APA StyleLe, T. T., Vo, T. Q., & Kim, J. (2025). An Attention-Enhanced Bivariate AI Model for Joint Prediction of Urban Flood Susceptibility and Inundation Depth. Mathematics, 13(16), 2617. https://doi.org/10.3390/math13162617