Integrating Multi-Dimensional Value Stream Mapping and Multi-Objective Optimization for Dynamic WIP Control in Discrete Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Digital Twin Framework for Dynamic WIP Control
2.2. Mathematical Modeling of WIP Dynamics
2.3. Dynamic WIP Control Strategy
3. Experimental Design
3.1. Simulation Platform Development
3.2. Scenario Design and Performance Metrics
- Baseline scenario: Configured according to actual production line settings with initial WIP levels at 100% of theoretical optimal values.
- High-WIP scenario: Initial WIP levels at 150% of theoretical optimal values to test the strategy’s performance under inventory pressure.
- Low-WIP scenario: Initial WIP levels at 50% of theoretical optimal values to verify the strategy’s capability to handle material shortages.
4. Results and Discussion
4.1. Baseline Performance Analysis
4.2. Dynamic Event Response Analysis
4.3. Comparative Analysis of Control Strategies
4.4. Sensitivity Analysis
5. Managerial Implications
5.1. Implementation Guidelines for Practitioners
5.2. Key Success Factors and Potential Barriers
5.3. Cost–Benefit Assessment of Implementation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rother, M.; Shook, J. Learning to See: Value Stream Mapping to Add Value and Eliminate Muda; Lean Enterprise Institute: Boston, MA, USA, 2003. [Google Scholar]
- Brown, A.; Amundson, J.; Badurdeen, F. Sustainable value stream mapping (Sus-VSM) in different manufacturing system configurations: Application case studies. J. Clean. Prod. 2014, 85, 164–179. [Google Scholar] [CrossRef]
- Jamil, N.; Gholami, H.; Mat Saman, M.Z.; Streimikiene, D.; Sharif, S.; Zakuan, N. DMAIC-based approach to sustainable value stream mapping: Towards a sustainable manufacturing system. Econ. Res.-Ekon. Istraživanja 2020, 33, 331–360. [Google Scholar] [CrossRef]
- Faulkner, W.; Badurdeen, F. Sustainable Value Stream Mapping (Sus-VSM): Methodology to visualize and assess manufacturing sustainability performance. J. Clean. Prod. 2014, 85, 8–18. [Google Scholar] [CrossRef]
- Vinodh, S.; Ben Ruben, R.; Asokan, P. Life cycle assessment integrated value stream mapping framework to ensure sustainable manufacturing: A case study. Clean Technol. Environ. Policy 2016, 18, 279–295. [Google Scholar] [CrossRef]
- Batwara, A.; Sharma, V.; Makkar, M.; Giallanza, A. Towards smart sustainable development through value stream mapping—A systematic literature review. Heliyon 2023, 9, e15852. [Google Scholar] [CrossRef]
- Sá Ribeiro, D.R.; Mendes, L.G.; Forcellini, F.A.; Frazzon, E.M.; Neumann, C. VSM Approach to Manufacturing Systems in Industry 4.0: From Literature Review to a Conceptual Framework. In Proceedings of the 11th International Conference on Production Research—Americas; Springer: Berlin/Heidelberg, Germany, 2023; pp. 538–547. [Google Scholar]
- Mariappan, R.C.S.; Veerabathiran, A.; Kp, P.; Kek, V. Intelligent VSM Model: A way to adopt Industry 4.0 technologies in manufacturing industry. Int. J. Adv. Manuf. Technol. 2023, 129, 2195–2214. [Google Scholar] [CrossRef]
- Nagy, M.; Lăzăroiu, G. Computer vision algorithms, remote sensing data fusion techniques, and mapping and navigation tools in the Industry 4.0-based Slovak automotive sector. Mathematics 2022, 10, 3543. [Google Scholar] [CrossRef]
- Kliestik, T.; Nagy, M.; Valaskova, K. Global value chains and industry 4.0 in the context of lean workplaces for enhancing company performance and its comprehension via the digital readiness and expertise of workforce in the V4 nations. Mathematics 2023, 11, 601. [Google Scholar] [CrossRef]
- Pettersen, J.-A.; Segerstedt, A. Restricted work-in-process: A study of differences between Kanban and CONWIP. Int. J. Prod. Econ. 2009, 118, 199–207. [Google Scholar] [CrossRef]
- Al-Hawari, T.; Qasem, A.G.; Smadi, H. Development and evaluation of a Basestock-CONWIP pull production control strategy in balanced assembly systems. Simul. Model. Pract. Theory 2018, 84, 83–105. [Google Scholar] [CrossRef]
- Spearman, M.L.; Woodruff, D.L.; Hopp, W.J. CONWIP Redux: Reflections on 30 years of development and implementation. Int. J. Prod. Res. 2022, 60, 381–387. [Google Scholar] [CrossRef]
- Yang, T.; Hung, Y.-H.; Huang, K.-C. A simulation study on CONWIP system design for bicycle chain manufacturing. IFAC-Paper 2019, 52, 2477–2481. [Google Scholar] [CrossRef]
- Sun, H. Optimizing manufacturing scheduling with genetic algorithm and LSTM neural networks. Int. J. Simul. Model. 2023, 22, 508–519. [Google Scholar] [CrossRef]
- Yao, S.; Jiang, Z.; Li, N.; Geng, N.; Liu, X. A decentralised multi-objective scheduling methodology for semiconductor manufacturing. Int. J. Prod. Res. 2011, 49, 7227–7252. [Google Scholar] [CrossRef]
- Pourvaziri, H.; Pierreval, H. Dynamic facility layout problem based on open queuing network theory. Eur. J. Oper. Res. 2017, 259, 538–553. [Google Scholar] [CrossRef]
- Saad, D.A.; Masoud, M.; Osman, H. Multi-objective optimization of lean-based repetitive scheduling using batch and pull production. Autom. Constr. 2021, 127, 103696. [Google Scholar] [CrossRef]
- Sharda, B.; Banerjee, A. Robust manufacturing system design using multi objective genetic algorithms, Petri nets and Bayesian uncertainty representation. J. Manuf. Syst. 2013, 32, 315–324. [Google Scholar] [CrossRef]
- Damirchilo, F.; Pourvaziri, H.; Şahin, R.; Venkatadri, U. Unequal area facility layout problem considering transporters interaction—A queuing theory and machine learning approach. Int. J. Comput. Integr. Manuf. 2024, 1–32. [Google Scholar] [CrossRef]
- Guo, H.; Chen, M.; Mohamed, K.; Qu, T.; Wang, S.; Li, J. A digital twin-based flexible cellular manufacturing for optimization of air conditioner line. J. Manuf. Syst. 2021, 58, 65–78. [Google Scholar] [CrossRef]
- Marmolejo-Saucedo, J.A. Design and development of digital twins: A case study in supply chains. Mob. Netw. Appl. 2020, 25, 2141–2160. [Google Scholar] [CrossRef]
- Sajadieh, S.M.M.; Noh, S.D. From Simulation to Autonomy: Reviews of the Integration of Artificial Intelligence and Digital Twins. Int. J. Precis. Eng. Manuf.-Green Technol. 2025, in press. [Google Scholar] [CrossRef]
- Ziari, M.; Taleizadeh, A.A. Integrated Data-driven and Artificial Intelligence Framework to develop Digital Twins in Distribution System of Supply Chains: A Real Industrial Case. Int. J. Prod. Econ. 2025, 289, 109743. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S. Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification. Artif. Intell. Rev. 2023, 56, 5479–5543. [Google Scholar] [CrossRef]
- Vazquez, S.; Marino, D.; Zafra, E.; Peña, M.D.V.; Rodríguez-Andina, J.J.; Franquelo, L.G.; Manic, M. An artificial intelligence approach for real-time tuning of weighting factors in FCS-MPC for power converters. IEEE Trans. Ind. Electron. 2021, 69, 11987–11998. [Google Scholar] [CrossRef]
Parameter Category | Parameter Item | Value Range | Distribution Characteristics |
---|---|---|---|
Work-in-Process Cost | Electrode Preparation | 42–58 CNY/unit-day | Uniform |
Cell Assembly | 85–102 CNY/unit-day | Uniform | |
Formation and Aging Stage | 138–162 CNY/unit-day | Uniform | |
Equipment Cost | Coating Equipment | 4200 CNY/h | Fixed |
Winding Equipment | 3800 CNY/h | Fixed | |
Formation and Aging | 5600 CNY/h | Fixed | |
Other Process | 1200–2800 CNY/h | Classified by Equipment Value | |
Labor Cost | Skilled Operators | 32 CNY/h | Fixed |
Maintenance Staff | 58 CNY/h | Fixed | |
Quality Inspection | 45 CNY/h | Fixed | |
Energy Cost | Electrode Preparation | 680 CNY/h | Fixed |
Cell Assembly | 420 CNY/h | Fixed | |
Formation and Aging | 2400 CNY/h | Fixed | |
Logistics Parameters | AGV Running Speed | 1.2 m/s | Fixed |
Process Distance | 8–45 m | Layout-based | |
Loading/Unloading Time | 45–75 s/operation | Normal (μ = 60, σ = 5) | |
Quality Parameters | Coating Fluctuation | ±2.5% | Normal (μ = 0, σ = 0.8%) |
Winding Fluctuation | ±1.8% | Normal (μ = 0, σ = 0.6%) | |
Welding Precision | ±1.2% | Normal (μ = 0, σ = 0.4%) | |
Capacity Consistency | ±2.0% | Normal (μ = 0, σ = 0.7%) |
Stage | Process | Quality | Cost | Maintenance | Buffer | Distance |
---|---|---|---|---|---|---|
Electrode Preparation | Cathode Coating | 0.993/0.007/0 | 4200/32/680 | 24 h/30 min | 2982 | 28 m |
Anode Coating | 0.995/0.006/0 | 4200/32/680 | 24 h/30 min | 3784 | 25 m | |
Cathode Slitting | 0.989/0.007/0.85 | 2600/32/380 | 16 h/25 min | 2416 | 15 m | |
Cell Assembly | Winding | 0.950/0.012/0.94 | 3800/45/480 | 8 h/20 min | 2346 | 32 m |
Ultrasonic Welding | 0.985/0.008/0.75 | 2600/45/380 | 8 h/25 min | 2174 | 12 m | |
Tab Welding | 0.985/0.008/0.72 | 2600/45/380 | 8 h/25 min | 2174 | 12 m | |
Formation | Vacuum Baking | 0.995/0.003/0 | 3400/32/2200 | 24 h/40 min | 2468 | 45 m |
Formation | 0.996/0.003/1.00 | 5600/52/2400 | 24 h/40 min | 2248 | 38 m | |
Aging | 0.998/0.002/0 | 4200/32/2200 | 24 h/40 min | 2044 | 40 m | |
Packaging | Capacity Testing | 0.997/0.002/0 | 4800/45/580 | 24 h/40 min | 2088 | 35 m |
DCR Testing | 0.995/0.003/0 | 3200/45/420 | 16 h/30 min | 2254 | 22 m | |
Final Sorting | 0.999/0.001/0 | 1600/45/180 | 16 h/20 min | - | - |
Parameter Category | Parameter Item | Value | Description |
---|---|---|---|
Production | Daily planned output | 21,780 units | Actual capacity level |
Batch size | 120 units | Standard production batch | |
Changeover time | 90–120 min | Based on actual process data | |
Quality | First-pass yield target | 82.85% | Actual production line level |
Rework rate limit | 15% | Quality control requirement | |
Quality inspection cycle | 2 h | Standard inspection interval | |
Equipment | Failure interval | Weibull (α = 150, β = 1.8) | Fitted from historical data |
Repair time | LogNormal (μ = 4.2, σ = 0.8) | Unit: hours | |
Planned maintenance | 30–40 min/shift | Based on process requirements | |
Control | WIP upper limit coefficient | 1.2 | Relative to theoretical value |
WIP lower limit coefficient | 0.8 | Relative to theoretical value | |
Control cycle | 5 min | Feedback adjustment interval |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Li, Y.; Gao, F. Integrating Multi-Dimensional Value Stream Mapping and Multi-Objective Optimization for Dynamic WIP Control in Discrete Manufacturing. Mathematics 2025, 13, 2610. https://doi.org/10.3390/math13162610
Liu B, Li Y, Gao F. Integrating Multi-Dimensional Value Stream Mapping and Multi-Objective Optimization for Dynamic WIP Control in Discrete Manufacturing. Mathematics. 2025; 13(16):2610. https://doi.org/10.3390/math13162610
Chicago/Turabian StyleLiu, Ben, Yan Li, and Feng Gao. 2025. "Integrating Multi-Dimensional Value Stream Mapping and Multi-Objective Optimization for Dynamic WIP Control in Discrete Manufacturing" Mathematics 13, no. 16: 2610. https://doi.org/10.3390/math13162610
APA StyleLiu, B., Li, Y., & Gao, F. (2025). Integrating Multi-Dimensional Value Stream Mapping and Multi-Objective Optimization for Dynamic WIP Control in Discrete Manufacturing. Mathematics, 13(16), 2610. https://doi.org/10.3390/math13162610