On the Cauchy Problem for a Simplified Compressible Oldroyd–B Model Without Stress Diffusion
Abstract
1. Introduction and the Main Results
1.1. Scheme of the Proof of Theorem 2
1.2. Scheme of the Proof of Theorem 3
- For two operators A and B, we denote as the commutator between A and B. For two positive numbers, by we mean that there is a generic constant C which may be different on different lines, such that . We shall denote as the inner product of . For a Banach space X and an interval of I, is the set of continuous functions on I with values in X. For , is the space of measurable functions on I with values in X, such that belongs to . We always let be a generic element of so that .
2. Preliminaries
3. Proof of Theorem 1
4. Proof of Theorem 2
4.1. Low-Frequency Estimates
4.2. High-Frequency Estimates
4.3. Proof of Theorem 2
5. Proof of Theorem 3
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baranovskii, E.S. Flow-through problem for a Jeffreys type viscoelastic fluid. Physica D 2025, 481, 134726. [Google Scholar] [CrossRef]
- Chen, Q.; Miao, C.; Zhang, Z. Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity. Comm. Pure Appl. Math. 2010, 63, 1173–1224. [Google Scholar] [CrossRef]
- Chen, Z.; Zhai, X. Global large solutions and incompressible limit for the compressible Navier-Stokes equations. J. Math. Fluid Mech. 2019, 21, 26. [Google Scholar] [CrossRef]
- Danchin, R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 2000, 141, 579–614. [Google Scholar] [CrossRef]
- Danchin, R. A Lagrangian approach for the compressible Navier-Stokes equations. Ann. Inst. Fourier Grrenoble 2014, 64, 753–791. [Google Scholar] [CrossRef]
- Danchin, R.; He, L. The incompressible limit in Lp type criticla spaces. Math. Ann. 2016, 366, 1365–1402. [Google Scholar] [CrossRef]
- Danchin, R.; Xu, J. Optimal time-decay estimates for the compressible Navier-Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal. 2017, 224, 53–90. [Google Scholar] [CrossRef]
- Feireisl, E. Compressible Navier-Stokes equations with a non-monotone pressure law. J. Differ. Equ. 2002, 184, 97–108. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotný, A.; Petzeltová, H. On the global existence of globally defined weak solutions to the Navier-Stokes equations of isentropic compressible fluids. J. Math. Fluid Mech. 2001, 3, 358–392. [Google Scholar] [CrossRef]
- Lei, Z. Global existence of classical solutions for some Oldroyd-B model via the incompressible limit. Chinses Ann. Math. Ser. B 2006, 27, 565–580. [Google Scholar] [CrossRef]
- Guillopé, C.; Salloum, Z.; Talhouk, R. Regular flows of weakly compressible viscoelastic fluids and the incompressible limit. Discrete Contin. Dyn. Syst. Ser. B 2010, 14, 1001–1028. [Google Scholar] [CrossRef]
- Baranovskii, E.S. On steady motion of viscoelastic fluid of Oldroyd type. Mat. Sb. 2014, 205, 763–776. [Google Scholar] [CrossRef]
- Zi, R. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete Contin. Dyn. Syst. Ser. A 2017, 37, 6437–6470. [Google Scholar] [CrossRef]
- Guo, C.; Zhai, X.; Zhang, S. Stability and exponential decay for the compressible Oldroyd-B model with non-small coupling parameter. J. Differ. Equ. 2024, 393, 278–295. [Google Scholar] [CrossRef]
- Zhai, X.; Chen, Z. Global wellposedness to the n-dimensional compressible Oldroyd-B model without damping mechanism. J. Dynam. Differ. Equ. 2024, 36, 1405–1433. [Google Scholar] [CrossRef]
- Hu, X.; Wu, G. Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows. SIAM J. Math. Anal. 2013, 45, 2815–2833. [Google Scholar] [CrossRef]
- Pan, X.; Xu, J. Global existence and optimal decay estimates of the compressible viscoelastic flows in Lp critical spaces. Discret. Contin. Dyn. Syst. Ser. A 2019, 39, 2021–2057. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, Z. Global well-posedness for compressible viscoelastic fluids near equilibrium. Arch. Ration. Mech. Anal. 2010, 198, 835–868. [Google Scholar] [CrossRef]
- Chemin, J.Y.; Masmoudi, N. About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 2001, 33, 84–112. [Google Scholar] [CrossRef]
- Elgindi, T.M.; Rousset, F. Global regularity for some Oldroyd-B type models. Comm. Pure Appl. Math. 2015, 68, 2005–2021. [Google Scholar] [CrossRef]
- Guillopé, C.; Saut, J.C. Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 1990, 15, 849–869. [Google Scholar] [CrossRef]
- Guillopé, C.; Saut, J.C. Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO Modél. Math. Anal. Numér. 1990, 24, 369–401. [Google Scholar] [CrossRef]
- Lin, F. Some analytical issues for elastic complex fluids. Comm. Pure Appl. Math. 2012, 65, 893–919. [Google Scholar] [CrossRef]
- Renardy, M. Local existence of solutions of the Dirichlet initial-boundary value problem for incompressible hypoelastic materials. SIAM J. Math. Anal. 1990, 21, 1369–1385. [Google Scholar] [CrossRef]
- Barrett, J.W.; Lu, Y.; Süli, E. Existence of large data finite energy global weak solutions to a compressible Oldroyd-B model. Commun. Math. Sci. 2017, 15, 1265–1323. [Google Scholar] [CrossRef]
- Barrett, J.W.; Boyaval, S. Existence and approximation of a (regularized) Oldroyd-B model. Math. Models Methods Appl. Sci. 2011, 21, 1783–1837. [Google Scholar] [CrossRef]
- Barrett, J.W.; Süli, E. Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead-spring chain models for dilute polymers: The two-dimensional case. J. Differ. Equ. 2012, 261, 592–626. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Z. Relative entropy, weak-strong uniqueness and conditional regularity for a compressible Oldroyd-B model. SIAM J. Math. Anal. 2018, 50, 557–590. [Google Scholar] [CrossRef]
- Wang, W.; Wen, H. The Cauchy problem for an Oldroyd-B model in three dimensions. Math. Models Methods Appl. Sci. 2020, 30, 139–179. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Y. Global wellposedness and large time behavior of solutions to the N-dimensional compressible Oldroyd-B model. J. Differ. Equ. 2021, 290, 116–146. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Wen, H. On the Cauchy problem for an inviscid Oldroyd-B model in three dimensions: Global well posedness and optimal decay rates. Proc. Roy. Soc. Edinburgh Sect. A 2023, 153, 441–490. [Google Scholar] [CrossRef]
- Zhai, X.; Zhao, Y. Stability of the generalized compressible Oldroyd-B model. J. Math. Phys. 2025, 66, 011512. [Google Scholar] [CrossRef]
- Lu, Y.; Pokorný, M. Global existence of large data weak solutions for a simplified compressible Oldroyd-B model without stress diffusion. Anal. Theory Appl. 2020, 36, 348–372. [Google Scholar] [CrossRef]
- Liu, S.; Lu, Y.; Wen, H. On the Cauchy problem for a compressible Oldroyd-B model without stress diffusion. SIAM J. Math. Anal. 2021, 53, 6216–6242. [Google Scholar] [CrossRef]
- Zhai, X. Large global solutions to the three dimensional compressible flow of liquid crystals. Nonlinear Anal. 2025, 250, 113657. [Google Scholar] [CrossRef]
- Bahouri, H.; Chemin, J.Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Nifferential Equations. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2011; Volume 343. [Google Scholar]
- Haspot, B. Existence of global strong solutions in critical spaces for barotropic viscous fluids. Arch. Ration. Mech. Anal. 2011, 202, 427–460. [Google Scholar] [CrossRef]
- He, L.; Huang, J.; Wang, C. Global stability of large solutions to the 3D compressible Navier-Stokes equations. Arch. Ration. Mech. Anal. 2019, 234, 1167–1222. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, J. Decay of dissipative equations and negative sobolev spaces. Comm. Part. Differ. Equ. 2012, 37, 2165–2208. [Google Scholar] [CrossRef]
- Xin, Z.; Xu, J. Optimal decay for the compressible Navier-Stokes equations without additional smallness assumptions. J. Differ. Equ. 2021, 274, 543–574. [Google Scholar] [CrossRef]
- Dong, B.; Wu, J.; Zhai, X. Global small solutions to a special 212-D compressible viscous non-resistive MHD system. J. Nonlinear Sci. 2023, 33, 21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dan, Y.; Li, F.; Ma, H.; Zhao, Y. On the Cauchy Problem for a Simplified Compressible Oldroyd–B Model Without Stress Diffusion. Mathematics 2025, 13, 2589. https://doi.org/10.3390/math13162589
Dan Y, Li F, Ma H, Zhao Y. On the Cauchy Problem for a Simplified Compressible Oldroyd–B Model Without Stress Diffusion. Mathematics. 2025; 13(16):2589. https://doi.org/10.3390/math13162589
Chicago/Turabian StyleDan, Yuanyuan, Feng Li, Haitao Ma, and Yajuan Zhao. 2025. "On the Cauchy Problem for a Simplified Compressible Oldroyd–B Model Without Stress Diffusion" Mathematics 13, no. 16: 2589. https://doi.org/10.3390/math13162589
APA StyleDan, Y., Li, F., Ma, H., & Zhao, Y. (2025). On the Cauchy Problem for a Simplified Compressible Oldroyd–B Model Without Stress Diffusion. Mathematics, 13(16), 2589. https://doi.org/10.3390/math13162589