Weighted Prime Number Theorem on Arithmetic Progressions with Refinements
Abstract
1. Introduction
2. Weighted Prime Number Theorem
3. Refinements
4. Numerical Examples
5. Conclusions and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Tchébychev, P.L. Lettre de M. le professeur Tchébychev à M. Fuss sur un nouveau théorème relatif aux nombres premiers contenus dans les formes 4n + 1 et 4n + 3. Bull. Classe Phys. Acad. Imp. Sci. 1853, 11, 208. [Google Scholar]
- Littlewood, J.E. Distribution des Nombres Premiers. Comptes Rendues 1914, 158, 1869–1872. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Math. 1918, 41, 119–196. [Google Scholar] [CrossRef]
- Aoki, M.; Koyama, S. Chebyshev’s bias against splitting and principal primes in global fields. J. Number Theory 2023, 245, 233–262. [Google Scholar] [CrossRef]
- Kurokawa, N. The Pursuit of the Riemann Hypothesis; Gijutsu Hyoron-sha: Tokyo, Japan, 2012. (In Japanese) [Google Scholar]
- Kimura, T.; Koyama, S.; Kurokawa, N. Euler products beyond the boundary. Lett. Math. Phys. 2014, 104, 1–19. [Google Scholar] [CrossRef]
- Rubinstein, M.; Sarnak, P. Chebyshev’s bias. Exp. Math. 1994, 3, 173–197. [Google Scholar] [CrossRef]
- Akbary, A.; Ng, N. Limiting distributions of the classical error terms of prime number theory. Q. J. Math. 2014, 65, 743–780. [Google Scholar] [CrossRef]
- Devin, L. Chebyshev’s bias for analytic L-functions. Math. Proc. Camb. Philos. Soc. 2020, 169, 103–140. [Google Scholar] [CrossRef]
- Shimada, K. Weighted prime number theorem with refinement. Preprint 2025. [Google Scholar]
- Stark, H. A problem in comparative prime number theory. Acta Arith. 1971, XVIII, 311–320. [Google Scholar] [CrossRef]
- Ingham, A.E. On two conjectures in the theory of numbers. Am. J. Math. 1942, 64, 313–319. [Google Scholar] [CrossRef]
- Bays, C.; Hudson, R.H. A new bound for the smallest x with π(x) > li(x). Math. Comp. 2000, 69, 1285–1296. [Google Scholar] [CrossRef]
- Kotnik, T. The prime-counting function and its analytic approximations: π(x) and its approximations. Adv. Comput. Math. 2008, 29, 55–70. [Google Scholar] [CrossRef]
- Koyama, S. The Power of Mathematics; Nikkei Science: Tokyo, Japan, 2020. (In Japanese) [Google Scholar]
- Koyama, S.; Kurokawa, N. Chebyshev’s Bias for Ramanujan’s τ-Function via the Deep Riemann Hypothesis. Proc. Japan Acad. Ser. A Math. Sci. 2022, 98, 35–39. [Google Scholar] [CrossRef]
- Kaneko, I.; Koyama, S. A new aspect of Chebyshev’s bias for elliptic curves over function fields. Proc. Am. Math. Soc. 2023, 151, 5059–5068. [Google Scholar] [CrossRef]
- Kaneko, I.; Koyama, S.; Kurokawa, N. Towards the Deep Riemann Hypothesis for GLn. arXiv 2022, arXiv:2206.02612. [Google Scholar]
- Okumura, Y. Chebyshev’s bias for Fermat curves of prime degree. Ramanujan J. 2024, 65, 725–742. [Google Scholar] [CrossRef]
- Sheth, A. Euler products at the centre and applications to Chebyshev’s bias. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 2025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, K.; Koyama, S.-y. Weighted Prime Number Theorem on Arithmetic Progressions with Refinements. Mathematics 2025, 13, 2564. https://doi.org/10.3390/math13162564
Shimada K, Koyama S-y. Weighted Prime Number Theorem on Arithmetic Progressions with Refinements. Mathematics. 2025; 13(16):2564. https://doi.org/10.3390/math13162564
Chicago/Turabian StyleShimada, Koji, and Shin-ya Koyama. 2025. "Weighted Prime Number Theorem on Arithmetic Progressions with Refinements" Mathematics 13, no. 16: 2564. https://doi.org/10.3390/math13162564
APA StyleShimada, K., & Koyama, S.-y. (2025). Weighted Prime Number Theorem on Arithmetic Progressions with Refinements. Mathematics, 13(16), 2564. https://doi.org/10.3390/math13162564