Path Navigation and Precise Deviation Correction Control for Tracked Roadheaders in Confined Roadway Spaces of Underground Coal Mines
Abstract
1. Introduction
2. Working Condition Scenario Modeling
2.1. Parallel Construction Environment of Excavation-Support-Bolting Operations
2.1.1. Traditional Roadway Construction Process
2.1.2. Integrated Parallel Construction Technology of Excavation-Support-Bolting Operations
2.2. Grid-Based Scenario Modeling
3. Motion Analysis and System Identification of Tracked Roadheaders
3.1. Navigation Motion Analysis of Tracked Roadheaders
3.2. Heading Motion Controller Design
3.3. System Identification Algorithm
3.3.1. Particle Swarm Optimization
3.3.2. System Identification Simulation Analysis
4. Path Planning for Tracked Roadheaders Based on the Mutated Particle Swarm Algorithm
Adaptive Particle Swarm Path Point Planning Algorithm
5. Deviation Correction Motion Control of Tracked Roadheaders
5.1. Deviation Correction Control System Scheme
5.2. Navigation and Deviation Correction Motion Control Algorithm
6. Control Experiment Research
6.1. Constraints and Parameter Settings
6.1.1. Heading Correction Control Constraints
6.1.2. System Simulation Parameter Settings
6.2. Path Navigation Experiment
6.2.1. Algorithm Performance Analysis
6.2.2. Simulation Analysis of Waypoint Planning
6.2.3. Simulation Analysis of Key Point Tracking and Rectification
6.3. Navigation Correction Control Experiment
7. Field Experiment
7.1. Intelligent Onboard Controller and Pose Detection System
7.2. Work Parameter Acquisition System
7.3. Motion Control Experiment
7.3.1. Straight-Line Tracking and Deviation Correction Motion Control Experiment
7.3.2. In Situ Steering Rectification Motion Control Experiment
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Jiang, W.; Wang, P.; Cheng, J.; Wu, M. Asynchronous coupling approach for leveling control of self-shifting temporary support. J. China Coal Soc. 2020, 45, 3625–3635. [Google Scholar]
- Wang, D.; Cheng, J.; Li, R.; Qu, Y.; Jiang, H.; Shen, Y.; Zhao, S.; Wu, M. Research on the Twin-Link Stepping Temporary Support Mechanism and the Repeatable Supportability of the Roof in the Underground Excavation Roadway of Coal Mine. Appl. Sci. 2024, 14, 6659. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Q.; Wang, C.; Chang, B.; Wang, X.L.; Ge, S.R.; Wu, M. Status quo and development of robotization research of coal mine China Coal. J. China Coal Soc. 2020, 45, 2995–3005. [Google Scholar]
- Niu, C.; Li, A.; Huang, X.; Li, W.; Xu, C. Research on global dynamic path planning method based on improved A∗ algorithm. Math. Probl. Eng. 2021, 2021, 4977041. [Google Scholar] [CrossRef]
- Wang, D.; Wei, W.; Yeboah, Y.; Li, Y.; Gao, Y. A robust model predictive control strategy for trajectory tracking of omni-directional mobile robots. J. Intell. Robot. Syst. 2020, 98, 439–453. [Google Scholar] [CrossRef]
- Saputra, M.R.U.; Lu, C.X.; de Gusmao, P.P.B.; Wang, B.; Markham, A.; Trigoni, N. Graph-based thermal–inertial SLAM with probabilistic neural networks. IEEE Trans. Robot. 2021, 38, 1875–1893. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, J.; Zhong, K.; Zhang, X.; Chen, W. Force tracking impedance control based on contour following algorithm. In International Conference on Intelligent Robotics and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 698–709. [Google Scholar]
- Lin, J.; Zheng, R.; Zhang, Y.; Feng, J.; Li, W.; Luo, K. CFHBA-PID algorithm: Dual-loop PID balancing robot attitude control algorithm based on complementary factor and honey badger algorithm. Sensors 2022, 22, 4492. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, M. Fuzzy control systems: Past, present and future. IEEE Comput. Intell. Mag. 2019, 14, 56–68. [Google Scholar] [CrossRef]
- Driankov, D.; Hellendoorn, H.; Reinfrank, M. An Introduction to Fuzzy Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, R. Research on the Key Technology of Self-Moving Over-Supporting in Integrated Roadway Excavation. Ph.D. Thesis, Mechanical Electronic and Information Engineering, China University of Mining & Technology (Beijing), Beijing, China, 2021. [Google Scholar]
- Ding, S.; Bai, J.; Han, J.; Wang, H.; Ma, F. Mechanical Characteristics Analysis and Structural Optimization of Key Component of Self-Moving Temporary Support. Appl. Sci. 2022, 12, 10745. [Google Scholar] [CrossRef]
- Ducros, C.; Hauser, G.; Mahjoubi, N.; Girones, P.; Boisset, L.; Sorin, A.; Jonquet, E.; Falciola, J.M.; Benhamou, A. RICA: A tracked robot for sampling and radiological characterization in the nuclear field. J. Field Robot. 2017, 34, 583–599. [Google Scholar] [CrossRef]
- Ugenti, A.; Galati, R.; Mantriota, G.; Reina, G. Analysis of an all-terrain tracked robot with innovative suspension system. Mech. Mach. Theory 2023, 182, 105237. [Google Scholar] [CrossRef]
- Chen, K.; Kamezaki, M.; Katano, T.; Kaneko, T.; Azuma, K.; Ishida, T.; Ishida, T.; Seki, M.; Ichiryu, K. Compound locomotion control system combining crawling and walking for multi-crawler multi-arm robot to adapt unstructured and unknown terrain. ROBOMECH J. 2018, 5, 1–17. [Google Scholar] [CrossRef]
- Dissanayake, M.; Sattar, T.P.; Howlader, O.; Pinson, I.; Gan, T.H. Tracked-wheel crawler robot for vertically aligned mooring chain climbing design, simulation and validation of a climbing robot for mooring chains. In Proceedings of the 2017 IEEE International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, 15–16 December 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Grazioso, A.; Ugenti, A.; Galati, R.; Mantriota, G.; Reina, G. Modeling and validation of a novel tracked robot via multibody dynamics. Robotica 2023, 41, 3211–3232. [Google Scholar] [CrossRef]
- Zhou, P.; Hu, X.; Zhu, Z.; Ma, J. What is the most suitable Lyapunov function? Chaos Solitons Fractals 2021, 150, 111154. [Google Scholar] [CrossRef]
- Anand, A.; Seel, K.; Gjærum, V.; Håkansson, A.; Robinson, H.; Saad, A. Safe learning for control using control lyapunov functions and control barrier functions: A review. Procedia Comput. Sci. 2021, 192, 3987–3997. [Google Scholar] [CrossRef]
- Ziemann, I.; Tsiamis, A.; Lee, B.; Jedra, Y.; Matni, N.; Pappas, G.J. A tutorial on the non-asymptotic theory of system identification. In Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, 13–15 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 8921–8939. [Google Scholar]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Li, J.; Zong, T.; Lu, G. Parameter identification of Hammerstein–Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA Trans. 2022, 120, 89–98. [Google Scholar] [CrossRef]
- Zacharakis, I.; Giagopoulos, D. Vibration-based damage detection using finite element modeling and the metaheuristic particle swarm optimization algorithm. Sensors 2022, 22, 5079. [Google Scholar] [CrossRef]
- Ahandani, M.A.; Abbasfam, J.; Kharrati, H. Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms. Appl. Intell. 2022, 52, 13082–13096. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Alateeq, M.; Pedrycz, W. Logic-oriented fuzzy neural networks: A survey. Expert Syst. Appl. 2024, 257, 125120. [Google Scholar] [CrossRef]
- Zhang, B.; Gong, X.; Wang, J.; Tang, F.; Zhang, K.; Wu, W. Nonstationary fuzzy neural network based on FCMnet clustering and a modified CG method with Armijo-type rule. Inf. Sci. 2022, 608, 313–338. [Google Scholar] [CrossRef]
- Al Sumarmad, K.A.; Sulaiman, N.; Wahab, N.I.A.; Hizam, H. Energy management and voltage control in microgrids using artificial neural networks, PID, and fuzzy logic controllers. Energies 2022, 15, 303. [Google Scholar] [CrossRef]
- Chadalavada, R.T.; Andreasson, H.; Schindler, M.; Palm, R.; Lilienthal, A.J. Bi-directional navigation intent communication using spatial augmented reality and eye-tracking glasses for improved safety in human–robot interaction. Robot. Comput.-Integr. Manuf. 2020, 61, 101830. [Google Scholar] [CrossRef]
Method | Identification Error | |||
---|---|---|---|---|
α | β | K | T | |
Least Squares Identification Method | 7.8 × 10−5 | 1.3 × 10−4 | 0.45 | 0.005 |
Genetic Identification Method | 3.2 × 10−5 | 6.3 × 10−5 | 0.37 | 0.002 |
Particle Swarm Identification Method | 1.1 × 10−6 | 3.15 × 10−6 | 0.04 | 0.000 |
Parameter Name | Variable | Unit | Value |
---|---|---|---|
Total Weight | m | t | 15 |
Track Ground Contact Length | Lh | mm | 2520 |
Track Width | lw | mm | 320 |
Track Center Distance | B | mm | 3820 |
Track Ground Pressure | Pt | MPa | 0.12 |
Vehicle Body Dimensions | - | mm3 | 5790 × 4160 × 2900 |
Maximum Travel Speed | - | m/s | 1 |
Drive Sprocket Pitch Radius | r | mm | 300 |
Moment of Inertia | J | kg·m2 | 15,000 |
Transmission Ratio | i | - | 10 |
Parameter | Value | Minimum | Average Fitness Value | Average Time to Reach Optimal/s | Average Steps to Reach Optimal |
---|---|---|---|---|---|
µ(σ) | 0.1 (0.5) | 0 | 4.942 × 10−8 | 4.624 | 1996 |
0.01 (0.05) | 0 | 2.944 × 10−9 | 1.836 | 1986 | |
0.001 (0.005) | 0 | 5.512 × 10−15 | 1.221 | 1995 | |
0.0001 (0.0005) | 8.042 × 10−15 | 1.462 × 10−9 | 1.047 | 2000 | |
δ | 0 | 2.421 × 10−19 | 3.098 × 10−5 | 1.021 | 2000 |
1 | 2.946 × 10−18 | 1.388 × 10−9 | 1.018 | 2000 | |
2 | 0 | 1.482 × 10−11 | 1.025 | 1890 | |
3 | 2.388 × 10−19 | 4.303 × 10−9 | 1.039 | 2000 |
Test Function | Algorithm | Average | Optimal | Standard Deviation |
---|---|---|---|---|
Shubert | PSO | −185.2376 | −186.7309 | 2.8810 |
APSO | −185.1315 | −186.7305 | 2.3547 | |
Rosenbrock | PSO | 0.0089 | 8.0458 × 10−5 | 0.9924 |
APSO | 0.0037 | 8.8146 × 10−7 | 0.0421 |
Driving Performance Parameters/Unit | Adaptive Particle Swarm Optimization | Standard Particle Swarm Optimization |
---|---|---|
Total Steering Angle/° | 51.238 | 81.905 |
Total Displacement of Centroid/mm | 100.559 | 100.875 |
Heading Safety Index | 0.585 | 0.581 |
Driving Performance Parameters/Unit | Adaptive Particle Swarm Optimization | Standard Particle Swarm Optimization |
---|---|---|
Total Steering Angle/° | 149.262 | 161.344 |
Total Displacement of Centroid/mm | 101.393 | 102.283 |
Heading Safety Index | 0.859 | 0.857 |
Driving Performance Parameters/Unit | Waypoint Tracking | Key Point Tracking | ||
---|---|---|---|---|
Scene Model 1 | Scene Model 2 | Scene Model 1 | Scene Model 2 | |
Total Steering Angle/° | 51.238 | 149.262 | 34.020 | 51.581 |
Total Displacement of Centroid/mm | 100.559 | 101.393 | 100.470 | 100.887 |
Heading Safety Index | 0.585 | 0.859 | 0.793 | 1.387 |
Control Algorithm | Input Signal/Parameter | Response Time/s | Error/Overshoot |
---|---|---|---|
PID | Step Signal | 1.29 | 0.1407 mm |
Sinusoidal Signal | 1.25 | 0.0847 mm | |
Sawtooth Wave Signal | 1.32 | 0.5991 mm | |
Square Wave Signal | 1.24 | 0.2736 mm | |
Centroid Velocity | 0.14 | 0.0175 m/s | |
Angular Velocity | 0.75 | 6.399 rad/s | |
Track Speed | 0.40 | 0.1768 m/s | |
Centroid Coordinates | 1.37 | 0.0013 mm | |
Heading Angle | 1.83 | 0.297° | |
FNN PID | Step Signal | 0.58 | 0.071 mm |
Sinusoidal Signal | 0.12 | 0.0645 mm | |
Sawtooth Wave Signal | 0.83 | 0.1443 mm | |
Square Wave Signal | 0.59 | 0.0164 mm | |
Centroid Velocity | 0.36 | 0.002 m/s | |
Angular Velocity | 0.66 | 2.752 rad/s | |
Track Speed | 0.41 | 0.0015 m/s | |
Centroid Coordinates | 0.24 | 0.001 mm | |
Heading Angle | 0.78 | 0.237° |
Main Parameter Name | Unit | Value |
---|---|---|
Dimensions | m3 | 5.79 × 4.16 × 2.56 |
Track Width | m | 0.33 |
Ground Pressure | MPa | 0.113 |
Travel Speed | m/s | 0.05 |
Gradeability | ° | 10 |
Supply Voltage | V | 380 |
Motor Power | KW | 45 |
Installed Sensor Name | Selected Model | Measurement Range/Accuracy | Main Measurement Object |
---|---|---|---|
Pressure Sensor | MB300 | 0–16 MPa/0.1 Pa | System Pressure |
Flow Sensor | PS604 | 2500 mL/min/5% | System Flow |
Torque Sensor | HBM701 | 0.01 N·m | Hydraulic Motor Torque |
Current Sensor | HKA-3YSD | 0–50 A/0.1 A | Motor Current |
Voltage Sensor | HV100 | 0–500 V/0.1 V | Motor Voltage |
Motor Angle Sensor | ECN413 | 0.01° | Motor Angle |
Photoelectric Sensor | QS18 | −20–100 mm/0.1 mm/s | Track Drive Wheel Speed |
Related Parameters/Units | FNN PID | Traditional PID |
---|---|---|
Maximum X-axis Position Error/mm | 36.14 | 64.02 |
Maximum Y-axis Position Error/mm | 51.06 | 64.38 |
Maximum Centroid Velocity/(m/s) | 0.8452 | 0.9024 |
Related Parameters/Unit | FNN PID | Traditional PID |
---|---|---|
Maximum Heading Angle Error/° | 0.31 | 0.43 |
Maximum Angular Velocity Error/(rad/s) | 0.0076 | 0.0105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Wang, D.; Zheng, W.; Li, T.; Wu, M. Path Navigation and Precise Deviation Correction Control for Tracked Roadheaders in Confined Roadway Spaces of Underground Coal Mines. Mathematics 2025, 13, 2557. https://doi.org/10.3390/math13162557
Li R, Wang D, Zheng W, Li T, Wu M. Path Navigation and Precise Deviation Correction Control for Tracked Roadheaders in Confined Roadway Spaces of Underground Coal Mines. Mathematics. 2025; 13(16):2557. https://doi.org/10.3390/math13162557
Chicago/Turabian StyleLi, Rui, Dongjie Wang, Weixiong Zheng, Tong Li, and Miao Wu. 2025. "Path Navigation and Precise Deviation Correction Control for Tracked Roadheaders in Confined Roadway Spaces of Underground Coal Mines" Mathematics 13, no. 16: 2557. https://doi.org/10.3390/math13162557
APA StyleLi, R., Wang, D., Zheng, W., Li, T., & Wu, M. (2025). Path Navigation and Precise Deviation Correction Control for Tracked Roadheaders in Confined Roadway Spaces of Underground Coal Mines. Mathematics, 13(16), 2557. https://doi.org/10.3390/math13162557