Elastic Curves and Euler–Bernoulli Constrained Beams from the Perspective of Geometric Algebra
Abstract
1. Introduction
2. Geometric Algebra
2.1. Products in GA
2.2. Principal Automorphisms
- Vector reflection: ;
- Geometric product reversion: ;
- Inverse blade, or Hermite, automorphism (IBA): for the respective blade.
2.3. Norm
2.4. Elements of Geometric Calculus
3. Frenet, Gradient, and Inertial Frames in 3D
3.1. Frenet Frames
3.2. Gradient (Darboux) Frame
3.3. Bishop (Inertial) Frames
3.4. Summary of the Frame Expressions
4. Euler–Lagrange Formulation of the Elastica Problem
4.1. Free Elastica Equations
4.2. Symmetries of the Lagrangian
4.3. Derivation of the Curvature Equation Using the Frenet Frame
4.4. Classification of Elastic Curves Using Geometric Invariants
5. Applications
5.1. Planar Elastica
5.2. Generic 3D Elastica
5.3. Integration of the Elastica in Terms of the Bishop Frame
5.4. Construction of the Preferred Coordinate System
5.5. Specialization to 2D
6. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BEM | Boundary Element Method |
FEM | Finite Element Modeling |
GA | Geometric Algebra |
IBA | Inverse Blade Automorphism |
ODE | Ordinary Differential Equation |
Appendix A. Elliptic Integrals and Functions
Appendix A.1. Elliptic Integrals of the First Kind
Appendix A.2. Elliptic Integrals of the Second Kind
Appendix A.3. Elliptic Integrals of the Third Kind
Appendix A.4. Integral Identities
Appendix A.5. Inner and Outer Products in
Appendix A.6. Noether Symmetries of a Second-Order Lagrangian
References
- Hasimoto, H. A soliton on a vortex filament. J. Fluid Mech. 1972, 51, 477–485. [Google Scholar] [CrossRef]
- Tsuru, H. Equilibrium Shapes and Vibrations of Thin Elastic Rod. J. Phys. Soc. Jpn. 1987, 56, 2309–2324. [Google Scholar] [CrossRef]
- Fukumoto, Y. Analogy between a vortex-jet filament and the Kirchhoff elastic rod. Fluid Dyn. Res. 2007, 39, 511–520. [Google Scholar] [CrossRef]
- Matsutani, S. Euler’s Elastica and Beyond. J. Geom. Symmetry Phys. 2010, 17, 45–86. [Google Scholar] [CrossRef]
- Saalschütz, L. Der Belastete Stab Unter Einwirkung Einer Seitlichen Kraft; B. G. Teubner: Leipzig, Germany, 1880. [Google Scholar]
- Greenhill, A.G. The Applications of Elliptic Functions; Macmillan & Co: London, UK, 1892. [Google Scholar]
- Levien, R. The Elastica: A Mathematical History. Technical Report UCB/EECS-2008-103. 2008. Available online: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-103.pdf (accessed on 2 August 2025).
- Love, A. A Treatise on the Mathematicaltheory of Elasticity; Cambridge University Press: Cambridge, UK, 1906. [Google Scholar]
- Greco, L.; Cuomo, M. Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn. 2014, 27, 861–877. [Google Scholar] [CrossRef]
- Langer, J.; Singer, D.A. Lagrangian Aspects of the Kirchhoff Elastic Rod. SIAM Rev. 1996, 38, 605–618. [Google Scholar] [CrossRef]
- Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus; Springer: Dordrecht, The Netherlands, 1984. [Google Scholar] [CrossRef]
- Doran, C.; Lasenby, A. Geometric Algebra for Physicists; Cambridge University Press: Cambridge, UK, 2003; p. 592. [Google Scholar]
- MacDonald, A. Linear and Geometric Algebra; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2010; p. 223. [Google Scholar]
- Prodanov, D.; Toth, V.T. Sparse Representations of Clifford and Tensor Algebras in Maxima. Adv. Appl. Clifford Algebr. 2016, 27, 661–683. [Google Scholar] [CrossRef]
- Hestenes, D. Space-Time Algebra, 2nd ed.; Birkhäuser: Basel, Switzerland, 2015; ISBN 978-3-319-18413-5. [Google Scholar]
- Dorst, L. The Inner Products of Geometric Algebra. In Applications of Geometric Algebra in Computer Science and Engineering; Dorst, L., Doran, C., Lasenby, J., Eds.; Birkhäuser Boston: Boston, MA, USA, 2002; pp. 35–46. [Google Scholar] [CrossRef]
- Prodanov, D. Clifford: A Lightweight Package for Performing Geometric and Clifford Algebra Calculations. 2016. Available online: https://zenodo.org/records/8205828 (accessed on 2 August 2025).
- Chappell, J.M.; Iqbal, A.; Gunn, L.J.; Abbott, D. Functions of Multivector Variables. PLoS ONE 2015, 10, e0116943. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A. Vector and Geometric Calculus; CreateSpace: Scotts Valley, CA, USA, 2012. [Google Scholar]
- Hestenes, D. The Shape of Differential Geometry in Geometric Calculus. In Guide to Geometric Algebra in Practice; Springer: London, UK, 2011; pp. 393–410. [Google Scholar] [CrossRef]
- Bishop, R.L. There is More than One Way to Frame a Curve. Am. Math. Mon. 1975, 82, 246–251. [Google Scholar] [CrossRef]
- Singer, D.A.; Garay, O.J.; García-Río, E.; Vázquez-Lorenzo, R. Lectures on Elastic Curves and Rods. Aip Conf. Proc. 2008, 1002, 3–32. [Google Scholar] [CrossRef]
- Rashid, M.S.; Khalil, S.S. Hamiltonian Description of Higher Order Lagrangians. Int. J. Mod. Phys. A 1996, 11, 4551–4559. [Google Scholar] [CrossRef]
- Mandal, B.P.; Pandey, V.K.; Thibes, R. BFV quantization and BRST symmetries of the gauge invariant fourth-order Pais-Uhlenbeck oscillator. Nucl. Phys. B 2022, 982, 115905. [Google Scholar] [CrossRef]
- Langer, J.; Singer, D.A. Knotted Elastic Curves in R 3. J. Lond. Math. Soc. 1984, 30, 512–520. [Google Scholar] [CrossRef]
- Langer, J.; Singer, D.A. The total squared curvature of closed curves. J. Differ. Geom. 1984, 20, 1–22. [Google Scholar] [CrossRef]
- Djondjorov, P.; Hadzhilazova, M.; Mladenov, I.M. Explicit Parameterization of Euler’s Elastica. In Proceedings of the 9th International Conference on Geometry, Integrability and Quantization, Varna, Bulgaria, 8–13 June 2007; Institute of Biophysics and Biomedical Engineerin: Sofia, Bulgaria, 2008; pp. 175–186. [Google Scholar] [CrossRef]
- Shi, Y.; Hearst, J.E. The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling. J. Chem. Phys. 1994, 101, 5186–5200. [Google Scholar] [CrossRef]
- Ameline, O.; Haliyo, S.; Huang, X.; Cognet, J.A.H. Classifications of ideal 3D elastica shapes at equilibrium. J. Math. Phys. 2017, 58, 062902. [Google Scholar] [CrossRef]
- Liu, L.W.; Hong, H.K. Clifford algebra valued boundary integral equations for three-dimensional elasticity. Appl. Math. Model. 2018, 54, 246–267. [Google Scholar] [CrossRef]
- Grigoriev, Y.M.; Yakovlev, A.M. Transversally isotropic elastic material applicable for permafrost rocks: A case study. Arct. Subarct. Nat. Resour. 2023, 28, 337–345. [Google Scholar] [CrossRef]
- Klimek, M.; Kurz, S.; Schöps, S.; Weiland, T. Discretization of Maxwell’s Equations for Non-inertial Observers Using Space-Time Algebra. Adv. Appl. Clifford Algebr. 2018, 28, 22. [Google Scholar] [CrossRef]
Frame | Darboux Bi-Vector | Frame Basis | Frame Matrix |
---|---|---|---|
Frenet | |||
Gradient | |||
Bishop |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodanov, D. Elastic Curves and Euler–Bernoulli Constrained Beams from the Perspective of Geometric Algebra. Mathematics 2025, 13, 2555. https://doi.org/10.3390/math13162555
Prodanov D. Elastic Curves and Euler–Bernoulli Constrained Beams from the Perspective of Geometric Algebra. Mathematics. 2025; 13(16):2555. https://doi.org/10.3390/math13162555
Chicago/Turabian StyleProdanov, Dimiter. 2025. "Elastic Curves and Euler–Bernoulli Constrained Beams from the Perspective of Geometric Algebra" Mathematics 13, no. 16: 2555. https://doi.org/10.3390/math13162555
APA StyleProdanov, D. (2025). Elastic Curves and Euler–Bernoulli Constrained Beams from the Perspective of Geometric Algebra. Mathematics, 13(16), 2555. https://doi.org/10.3390/math13162555