Lightweight Mamba Model for 3D Tumor Segmentation in Automated Breast Ultrasounds
Abstract
1. Introduction
- The proposed model, LightSegMamba, was designed to deliver high segmentation performance while reducing the number of parameters by approximately 95.43% compared to the original SegMamba.
- To effectively learn multi-scale contextual information, we designed a Deeper Atrous Spatial Pyramid Pooling (DASPP) module that applies atrous depthwise separable convolutions in parallel.
- To capture structural dependencies along the three anatomical directions (axial, coronal, and sagittal) in ABUS images, we incorporated a Tri-Oriented Mamba (ToM) module.
- Furthermore, skip connections between the encoder and decoder were employed to preserve low-level features such as tumor boundaries and locations, while integrating them with high-level semantic information for precise segmentation.
2. Related Works
2.1. ABUS Image Analysis
2.2. State–Space Model
2.3. TDSC-ABUS Dataset
2.4. Pre-Processing
3. Methods
3.1. Baseline Models
3.2. Proposed Model
3.2.1. DASPP Mamba
3.2.2. 3D DASPP
4. Results
4.1. Implementation Details
4.1.1. Loss Function
4.1.2. Optimizer
4.2. Evaluation Metric
4.2.1. Dice Coefficient (DSC)
4.2.2. Intersection over Union (IoU)
4.2.3. Precision
4.2.4. Recall
4.3. Comparison with Base Model
4.4. Comparison with Mamba Model
5. Ablation Study
6. Discussion
6.1. Contributions
6.2. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABUS | Automated Breast Ultrasound |
DASPP | Dilated Atrous Spatial Pyramid Pooling |
DSC | Dice Similarity Coefficient |
IoU | Intersection over Union |
DeepCNN | Deep Convolutional Neural Network |
ToM | Tri-Oriented Spatial Mamba |
DWS Conv | Depthwise Separable Convolution |
GAP | Global Average Pooling |
References
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025, 31, 1154–1162. [Google Scholar] [CrossRef]
- Huang, J.; Chan, P.S.; Lok, V.; Chen, X.; Ding, H.; Jin, Y.; Yuan, J.; Lao, X.q.; Zheng, Z.J.; Wong, M.C. Global incidence and mortality of breast cancer: A trend analysis. Aging 2021, 13, 5748. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Hu, F.; Yang, H.; Qiu, L.; Wang, X.; Ren, Z.; Wei, S.; Zhou, H.; Chen, Y.; Hu, H. Innovation networks in the advanced medical equipment industry: Supporting regional digital health systems from a local–national perspective. Front. Public Health 2025, 13, 1635475. [Google Scholar] [CrossRef]
- Sha, R.; Kong, X.m.; Li, X.y.; Wang, Y.b. Global burden of breast cancer and attributable risk factors in 204 countries and territories, from 1990 to 2021: Results from the Global Burden of Disease Study 2021. Biomark. Res. 2024, 12, 87. [Google Scholar] [CrossRef]
- Cai, Y.; Dai, F.; Ye, Y.; Qian, J. The global burden of breast cancer among women of reproductive age: A comprehensive analysis. Sci. Rep. 2025, 15, 9347. [Google Scholar] [CrossRef]
- Pang, J.; Ding, N.; Liu, X.; He, X.; Zhou, W.; Xie, H.; Feng, J.; Li, Y.; He, Y.; Wang, S.; et al. Prognostic value of the baseline systemic immune-inflammation index in HER2-positive metastatic breast cancer: Exploratory analysis of two prospective trials. Ann. Surg. Oncol. 2025, 32, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Gjesvik, J.; Moshina, N.; Lee, C.I.; Miglioretti, D.L.; Hofvind, S. Artificial intelligence algorithm for subclinical breast cancer detection. JAMA Netw. Open 2024, 7, e2437402. [Google Scholar] [CrossRef]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; et al. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Nothacker, M.; Duda, V.; Hahn, M.; Warm, M.; Degenhardt, F.; Madjar, H.; Weinbrenner, S.; Albert, U.S. Early detection of breast cancer: Benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review. BMC Cancer 2009, 9, 335. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chen, Z.; Xu, Y.; Li, H.; Li, Y.; Peng, L.; Shan, H.; Liu, X.; Wu, H.; Wu, L.; et al. Low-frequency ultrasound sensitive Piezo1 channels regulate keloid-related characteristics of fibroblasts. Adv. Sci. 2024, 11, 2305489. [Google Scholar] [CrossRef]
- Richie, R.C.; Swanson, J.O. Breast cancer: A review of the literature. J. Insur. Med. 2003, 35, 85–101. [Google Scholar]
- Huss, R. Digital Medicine: Bringing Digital Solutions to Medical Practice; Jenny Stanford Publishing: Singapore, 2023. [Google Scholar]
- Hejduk, P.; Marcon, M.; Unkelbach, J.; Ciritsis, A.; Rossi, C.; Borkowski, K.; Boss, A. Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network. Eur. Radiol. 2022, 32, 4868–4878. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Wang, C.; Zhu, J.; Li, G.; Liu, C.L.; Lin, L. Cross-Modal Causal Representation Learning for Radiology Report Generation. IEEE Trans. Image Process. 2025, 34, 2970–2985. [Google Scholar] [CrossRef] [PubMed]
- Luan, S.; Yu, X.; Lei, S.; Ma, C.; Wang, X.; Xue, X.; Ding, Y.; Ma, T.; Zhu, B. Deep learning for fast super-resolution ultrasound microvessel imaging. Phys. Med. Biol. 2023, 68, 245023. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Diaz, O.; Lladó, X.; Gubern-Mérida, A.; Vilanova, J.C.; Martí, R. Lesion segmentation in automated 3D breast ultrasound: Volumetric analysis. Ultrason. Imaging 2018, 40, 97–112. [Google Scholar] [CrossRef]
- Cao, X.; Chen, H.; Li, Y.; Peng, Y.; Wang, S.; Cheng, L. Dilated densely connected U-Net with uncertainty focus loss for 3D ABUS mass segmentation. Comput. Methods Programs Biomed. 2021, 209, 106313. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, S.; Xiang, F.; Li, C.; Li, S.; Gao, T.; He, K.; Chen, J.; Zhang, J.; Zhang, J. White patchy skin lesion classification using feature enhancement and interaction transformer module. Biomed. Signal Process. Control 2025, 107, 107819. [Google Scholar] [CrossRef]
- Song, W.; Wang, X.; Guo, Y.; Li, S.; Xia, B.; Hao, A. Centerformer: A novel cluster center enhanced transformer for unconstrained dental plaque segmentation. IEEE Trans. Multimed. 2024, 26, 10965–10978. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Lu, S.; Wang, R.; Ren, H.; AlSanad, A.; AlQahtani, S.A.; Yin, Z.; Li, X.; Zheng, W. AFBNet: A Lightweight Adaptive Feature Fusion Module for Super-Resolution Algorithms. CMES-Comput. Model. Eng. Sci. 2024, 140, 2315–2347. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, X.; Wu, X.; Liu, Y. Fast image dehazing method based on linear transformation. IEEE Trans. Multimed. 2017, 19, 1142–1155. [Google Scholar] [CrossRef]
- Cao, X.; Chen, H.; Li, Y.; Peng, Y.; Zhou, Y.; Cheng, L.; Liu, T.; Shen, D. Auto-DenseUNet: Searchable neural network architecture for mass segmentation in 3D automated breast ultrasound. Med Image Anal. 2022, 82, 102589. [Google Scholar] [CrossRef]
- Chen, X.; Jing, R. Video super resolution based on deformable 3D convolutional group fusion. Sci. Rep. 2025, 15, 9050. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Li, Y.; Cao, X.; Wang, S.; Shen, D. Cross-model attention-guided tumor segmentation for 3D automated breast ultrasound (ABUS) images. IEEE J. Biomed. Health Informatics 2021, 26, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, H.; Kozegar, E.; Tan, T.; Soryani, M. Mass segmentation in automated 3-D Breast ultrasound using dual-path U-net. arXiv 2021, arXiv:2109.08330. [Google Scholar] [CrossRef]
- Pan, P.; Chen, H.; Li, Y.; Cai, N.; Cheng, L.; Wang, S. Tumor segmentation in automated whole breast ultrasound using bidirectional LSTM neural network and attention mechanism. Ultrasonics 2021, 110, 106271. [Google Scholar] [CrossRef]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar] [CrossRef]
- Xing, Z.; Ye, T.; Yang, Y.; Liu, G.; Zhu, L. Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024; Springer: Cham, Switzerland, 2024; pp. 578–588. [Google Scholar]
- Zhang, M.; Yu, Y.; Jin, S.; Gu, L.; Ling, T.; Tao, X. VM-UNET-V2: Rethinking vision mamba UNet for medical image segmentation. In Proceedings of the International Symposium on Bioinformatics Research and Applications, Kunming, China, 19–21 July 2024; Springer: Singapore, 2024; pp. 335–346. [Google Scholar]
- Wang, J.; Chen, J.; Chen, D.; Wu, J. LKM-UNet: Large kernel vision mamba unet for medical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Marrakesh, Morocco, 6–10 October 2024; Springer: Cham, Switzerland, 2024; pp. 360–370. [Google Scholar]
- Wu, R.; Liu, Y.; Liang, P.; Chang, Q. H-vmunet: High-order vision mamba unet for medical image segmentation. Neurocomputing 2025, 624, 129447. [Google Scholar] [CrossRef]
- Li, G.; Huang, Q.; Wang, W.; Liu, L. Selective and multi-scale fusion Mamba for medical image segmentation. Expert Syst. Appl. 2025, 261, 125518. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, G.; Li, H. Vision Mamba and xLSTM-UNet for medical image segmentation. Sci. Rep. 2025, 15, 8163. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, H.; Zhou, H.Y.; Yu, L.; Liang, Y.; Yu, Y.; Zhang, S.; Zheng, H.; Wang, S. Swin-UMamba†: Adapting Mamba-based vision foundation models for medical image segmentation. IEEE Trans. Med. Imaging 2024. [Google Scholar] [CrossRef]
- Gong, H.; Kang, L.; Wang, Y.; Wang, Y.; Wan, X.; Wu, X.; Li, H. nnmamba: 3D biomedical image segmentation, classification and landmark detection with state space model. In Proceedings of the ISBI, Houston, TX, USA, 14–17 April 2025. [Google Scholar]
- Liao, W.; Zhu, Y.; Wang, X.; Pan, C.; Wang, Y.; Ma, L. LightM-UNet: Mamba Assists in Lightweight UNet for Medical Image Segmentation. arXix 2024, arXiv:2403.05246. [Google Scholar]
- Wang, G.; Li, Y.; Chen, W.; Ding, M.; Cheah, W.P.; Qu, R.; Ren, J.; Shen, L. S3-Mamba: Small-Size-Sensitive Mamba for Lesion Segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, Philadelphia, PA, USA, 25 February–4 March 2025; Volume 39, pp. 7655–7664. [Google Scholar]
- Zhang, M.; Sun, Q.; Han, Y.; Zhang, J. Edge-interaction Mamba Network for MRI Brain Tumor Segmentation. In Proceedings of the ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hyderabad, India, 6–11 April 2025; pp. 1–5. [Google Scholar]
- Luo, G.; Xu, M.; Chen, H.; Liang, X.; Tao, X.; Ni, D.; Jeong, H.; Kim, C.; Stock, R.; Baumgartner, M.; et al. Tumor Detection, Segmentation and Classification Challenge on Automated 3D Breast Ultrasound: The TDSC-ABUS Challenge. arXiv 2025, arXiv:2501.15588. [Google Scholar]
- Isensee, F.; Jäger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. Automated design of deep learning methods for biomedical image segmentation. arXiv 2019, arXiv:1904.08128. [Google Scholar]
- Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September 2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 311–320. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, 17–21 October 2016; Proceedings, Part II 19. Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar] [CrossRef]
- Emara, T.; Abd El Munim, H.E.; Abbas, H.M. Liteseg: A novel lightweight convnet for semantic segmentation. In Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, Australia, 2–4 December 2019; pp. 1–7. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
Transformation Type | Probability | Value/Setting | Function |
---|---|---|---|
Rotation | 20% | ±30° | Rotates image along X-, Y-, and Z-axes |
Scaling | 20% | 0.7–1.4× | Adjusts image size (zoom in/out, with padding if shrinking) |
Gaussian Noise Transform | 10% | - | Adds Gaussian noise to the image |
Gaussian Blur Transform | 20% | 0.5–1.0 sigma | Applies Gaussian blur |
Brightness Multiplicative Transform | 15% | 0.75–1.25× | Adjusts image brightness |
Contrast Augmentation Transform | 15% | - | Adjusts image contrast |
Simulate Low Resolution Transform | 25% | 0.5–1.0 zoom | Simulates low-resolution degradation |
Gamma Invert Transform | 10% | gamma 0.7–1.5 | Applies per-channel gamma adjustment after image inversion |
Gamma Transform | 30% | gamma 0.7–1.5 | Applies per-channel gamma adjustment |
Mirror Transform | 50% | - | Mirrors the image along X-, Y-, and Z-axes |
Model | DSC | IoU | Precision | Recall | Parameters |
---|---|---|---|---|---|
SegMamba | 0.7898 | 0.6633 | 0.7892 | 0.8283 | 67.36M |
3D U-Net | 0.7007 | 0.5478 | 0.6203 | 0.8527 | 4.77M |
SegResNet | 0.7728 | 0.6434 | 0.7786 | 0.8111 | 4.70M |
SEBlock + 3D U-Net | 0.7607 | 0.6245 | 0.8115 | 0.7565 | 1.40M |
DeepLabV3 (ResNet34, OS = 8) | 0.7624 | 0.6299 | 0.8110 | 0.7604 | 74.68M |
DeepLabV3 (ResNet50, OS = 16) | 0.6932 | 0.5388 | 0.6704 | 0.7585 | 90.00M |
DeepLabV3 (ResNet152, OS = 16) | 0.6798 | 0.5281 | 0.7380 | 0.6781 | 161.21M |
LightSegMamba | 0.7985 | 0.6724 | 0.7932 | 0.8336 | 3.08M |
Mamba Model | DSC | IoU | Precision | Recall | Parameters |
---|---|---|---|---|---|
LightSegMamba | 0.8062 | 0.6831 | 0.8032 | 0.8332 | 3.08M |
SegMamba | 0.8022 | 0.6775 | 0.8069 | 0.8232 | 67.36M |
nnMamba | 0.7481 | 0.6086 | 0.6683 | 0.8922 | 15.55M |
LightM-UNet | 0.6710 | 0.5225 | 0.6959 | 0.7046 | 1.87M |
Ablation Model | DSC | IoU | Precision | Recall | Parameters |
---|---|---|---|---|---|
Basic | 0.7985 | 0.6724 | 0.7932 | 0.8336 | 3.08M |
DASPP Removed | 0.7654 | 0.6331 | 0.8076 | 0.8150 | 2.94M |
ToM Removed | 0.7835 | 0.6525 | 0.7738 | 0.8239 | 2.83M |
Model | DSC | IoU | Precision | Recall | Parameters |
---|---|---|---|---|---|
2-stage | 0.7985 | 0.6724 | 0.7932 | 0.8336 | 3.08M |
3-stage | 0.7958 | 0.6712 | 0.8076 | 0.8150 | 12.09M |
4-stage | 0.7924 | 0.6662 | 0.8056 | 0.8128 | 47.85M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, J.; Dharejo, F.A.; Abbas, Z.; Lee, S.W. Lightweight Mamba Model for 3D Tumor Segmentation in Automated Breast Ultrasounds. Mathematics 2025, 13, 2553. https://doi.org/10.3390/math13162553
Kim J, Kim J, Dharejo FA, Abbas Z, Lee SW. Lightweight Mamba Model for 3D Tumor Segmentation in Automated Breast Ultrasounds. Mathematics. 2025; 13(16):2553. https://doi.org/10.3390/math13162553
Chicago/Turabian StyleKim, JongNam, Jun Kim, Fayaz Ali Dharejo, Zeeshan Abbas, and Seung Won Lee. 2025. "Lightweight Mamba Model for 3D Tumor Segmentation in Automated Breast Ultrasounds" Mathematics 13, no. 16: 2553. https://doi.org/10.3390/math13162553
APA StyleKim, J., Kim, J., Dharejo, F. A., Abbas, Z., & Lee, S. W. (2025). Lightweight Mamba Model for 3D Tumor Segmentation in Automated Breast Ultrasounds. Mathematics, 13(16), 2553. https://doi.org/10.3390/math13162553