The Geometric Characterizations of the Ramanujan-Type Entire Function
Abstract
1. Introduction and Preliminaries
2. Some Useful Lemmas
- (i).
- If , then
- (ii).
- If , then there exists such that
- 1.
- The infinite sequence of complex numbers is a subordination factor sequence.
- 2.
- The following inequality
3. Close-to-Convexity of the Ramanujan-Type Entire Function
4. Further Geometric Properties of the Ramanujan-Type Entire Function
- (a).
- If , then
- (b).
- If , then
5. An Application: A Monotonicity Property of the Ramanujan-Type Entire Function
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E. q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra; CBMS Regional Conference Series; American Mathematical Society: Providence, RI, USA, 1986; Volume 66. [Google Scholar]
- Haldane, F.D.M. Fractional statistics in arbitrary dimensions: A generalization of the Pauli principle. Phys. Rev. Lett. 1990, 67, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Kedem, R.; Klassen, T.R.; McCoy, B.M.; Melzer, E. Fermionic quasiparticle representations for characters of (G(1))1 × (G(1))1/(G(1))2. Phys. Lett. B 1993, 304, 263–270. [Google Scholar] [CrossRef]
- Kedem, R.; Klassen, T.R.; McCoy, B.M.; Melzer, E. Fermionic sum representations for comformal eld theory characters. Phys. Lett. B 1993, 307, 68–76. [Google Scholar] [CrossRef]
- Ramanujan, S. The Lost Notebook and Other Unpublished Papers; Springer: Berlin, Germany; Narosa Publishing House: New Delhi, India, 1998. [Google Scholar]
- Ismail, M.E.H.; Zhang, R. q-Bessel functions and Rogers-Ramanujan type identities. Proc. Am. Math. Soc. 2020, 146, 3633–3646. [Google Scholar] [CrossRef]
- Özkan, Y.; Mehrez, K.; Deniz, E. Some Turán type inequalities for the Ramanujan type entire function. Ramanujan J. 2025, 67, 17. [Google Scholar] [CrossRef]
- Deniz, E. Geometric and monotonic properties of Ramanujan type entire functions. Ramanujan J. 2020, 55, 103–130. [Google Scholar] [CrossRef]
- Aktas, I. On some geometric properties and Hardy class of q-Bessel functions. AIMS Math. 2020, 5, 3156–3168. [Google Scholar] [CrossRef]
- Aktas, I. Lemniscate and exponential starlikeness of regular Coulomb wave functions. Stud. Sci. Math. Hung. 2020, 57, 372–384. [Google Scholar] [CrossRef]
- Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 61, 338–350. [Google Scholar] [CrossRef]
- Frasin, B.A.; Kazimoglu, S. Applications of the normalized Le Roy-type Mittag-Leffler function on partial sums of analytic functions. Afr. Mat. 2025, 36, 41. [Google Scholar] [CrossRef]
- Mehrez, K.; Das, S.; Kumar, A. Geometric properties of the products of modified Bessel functions of the First Kind. In Bulletin of the Malaysian Mathematical Sciences Society; Springer: Berlin/Heidelberg, Germany, 2021; Volume 44, pp. 2715–2733. [Google Scholar] [CrossRef]
- Mehrez, K. Some geometric properties of a class of functions related to the Fox-Wright function. Banach J. Math. Anal. 2021, 14, 1222–1240. [Google Scholar] [CrossRef]
- Mehrez, K.; Das, S. On geometric properties of the Mittag-Leffler and Wright function. J. Korean Math. Soc. 2021, 58, 949–965. [Google Scholar]
- Noreen, S.; Raza, M.; Din, M.U.; Hussain, S. On certain geometric properties of normalized Mittag-Leffler functions. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81, 167–174. [Google Scholar]
- Noreen, S.; Raza, M.; Malik, S.N. Certain geometric properties of Mittag-Leffler functions. J. Inequalities Appl. 2019, 2019, 94. [Google Scholar] [CrossRef]
- Sharma, M.; Jain, N.K.; Kumar, S. Starlikeness of analytic functions using special functions and subordination. Boletín Soc. Matemática Mex. 2024, 30, 55. [Google Scholar] [CrossRef]
- Prajapat, J.K. Certain geometric properties of the Wright functions. Integral Transform. Spec. Funct. 2015, 26, 203–212. [Google Scholar] [CrossRef]
- Zayed, H.M.; Mehrez, K. Generalized Lommel-Wright function and its geometric properties. J. Inequalities Appl. 2022, 2022, 115. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften. 259; Springer: New York, NY, USA, 1983. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku A 1935, 40, 167–188. [Google Scholar]
- Eenigenburg, P.J.; Keogh, F.R. The Hardy class of some univalent functions and their derivatives. Mich. Math. J. 1970, 17, 335–346. [Google Scholar] [CrossRef]
- Wilf, H.S. Subordinating factor sequences for convex maps of the unit circle. Proc. Am. Math. Soc. 1961, 12, 689–693. [Google Scholar] [CrossRef]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; NIST and Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Cotirla, L.I.; Szász, R. On the monotony of Bessel functions of the first kind. Comput. Methods Funct. Theory 2023, 24, 747–752. [Google Scholar] [CrossRef]
- Cotirla, L.I.; Szász, R. The Monotony of the Lommel Functions. Results Math. 2023, 78, 127. [Google Scholar] [CrossRef]
- Denis, E.; Szász, R. On The Monotony of Struve Functions. Complex Anal. Oper. Theory 2024, 18, 120. [Google Scholar] [CrossRef]
- Özkan, Y.; Korkmaz, S.; Deniz, E. The monotony of the q-Bessel functions. J. Math. Anal. Appl. 2025, 549, 129439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrez, K.; Alenazi, A. The Geometric Characterizations of the Ramanujan-Type Entire Function. Mathematics 2025, 13, 2301. https://doi.org/10.3390/math13142301
Mehrez K, Alenazi A. The Geometric Characterizations of the Ramanujan-Type Entire Function. Mathematics. 2025; 13(14):2301. https://doi.org/10.3390/math13142301
Chicago/Turabian StyleMehrez, Khaled, and Abdulaziz Alenazi. 2025. "The Geometric Characterizations of the Ramanujan-Type Entire Function" Mathematics 13, no. 14: 2301. https://doi.org/10.3390/math13142301
APA StyleMehrez, K., & Alenazi, A. (2025). The Geometric Characterizations of the Ramanujan-Type Entire Function. Mathematics, 13(14), 2301. https://doi.org/10.3390/math13142301