Quadratic BSDEs with Singular Generators and Unbounded Terminal Conditions: Theory and Applications
Abstract
1. Introduction
2. Notations and Existence Results
- (1)
- ;
- (2)
- BSDE and BSDE have solutions and in , respectively, such that . For every , , and , the following inequalities hold:andwhere η and ζ are two -adapted processes satisfying that ζ is continuous and
3. Comparison Theorem
4. Stability Result and Application to PDEs
4.1. Stability Result
4.2. Application to Singular Quadratic PDEs
- If
- (i)
- as ;
- (ii)
- (1)
- ;
- (2)
5. Applications in Finance
5.1. Linking Robust Control to Stochastical Differential Utility
- •
- ξ is bounded and for some constant .
- •
- Given any fixed , F is concave and continuous and satisfiesin which α and β are non-negative processes, such that and are bounded, and where satisfying is convex, ψ is concave, increasing, and continuous, is increasing, and is locally integrable on .
5.2. Certainty Equivalent Based on g-Expectation
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 1990, 14, 55–61. [Google Scholar] [CrossRef]
- Briand, P.; Hu, Y. BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Field 2006, 136, 604–618. [Google Scholar] [CrossRef]
- Briand, P.; Hu, Y. Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Field 2008, 141, 543–567. [Google Scholar] [CrossRef]
- Tevzadze, R. Solvability of backward stochastic differential equations with quadratic growth. Stoch. Process. Their Appl. 2008, 118, 503–515. [Google Scholar] [CrossRef]
- Barrieu, P.; Karoui, N.E. Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs. Ann. Probab. 2013, 41, 1831–1863. [Google Scholar] [CrossRef]
- Briand, P.; Richou, A. On the uniqueness of solutions to quadratic BSDEs with non-convex generators. In Frontiers in Stochastic Analysis–BSDEs, SPDEs and Their Applications; Cohen, S.N., Gyöngy, I., dos Reis, G., Siska, D., Szpruch, Ł., Eds.; Springer: Cham, Switzerland, 2019; pp. 89–107. [Google Scholar]
- Kobylanski, M. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 2000, 28, 558–602. [Google Scholar] [CrossRef]
- Duffie, D.; Epstein, L.G. Stochastic differential utility. Econometrica 1992, 60, 353–394. [Google Scholar] [CrossRef]
- Bahlali, K.; Eddahbi, M.; Ouknine, Y. Quadratic BSDE with L2-terminal data: Krylov’s estimate, Itô-Krylov’s formula and existence results. Ann. Probab. 2017, 45, 2377–2397. [Google Scholar] [CrossRef]
- Essaky, E.; Hassani, M. General existence results for reflected BSDE and BSDE. Bull. Sci. Math. 2011, 135, 442–466. [Google Scholar] [CrossRef]
- Bahlali, K.; Tangpi, L. BSDEs Driven by |z|2/y and Applications to PDEs and Decision Theory. Available online: https://arxiv.org/pdf/1810.05664.pdf (accessed on 1 June 2021).
- Laeven, R.J.; Gianin, E.R.; Zullino, M. Geometric BSDEs. Available online: https://arxiv.org/pdf/2405.09260 (accessed on 1 February 2025).
- Zheng, S. Well-Posedness of Quadratic RBSDEs and BSDEs with One-Sided Growth Restrictions. Available online: https://arxiv.org/pdf/2412.21172 (accessed on 1 February 2025).
- Vázquez, J.L. The Porous Medium Equation: Mathematical Theory; Oxford University Press: New York, NY, USA, 2007; ISBN 978-0-19-856903-9. [Google Scholar]
- Giachetti, D.; Petitta, F.; De León, S.S. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Commun. Pure Appl. Anal. 2012, 11, 1875–1895. [Google Scholar] [CrossRef]
- Shamarova, E. Solutions with positive components to quasilinear parabolic systems. J. Math. Anal. Appl. 2024, 536, 128243. [Google Scholar] [CrossRef]
- Ma, H.; Tian, D. Generalized entropic risk measures and related BSDEs. Stat. Probab. Lett. 2021, 174, 109–110. [Google Scholar] [CrossRef]
- Skiadas, C. Robust control and recursive utility. Financ. Stoch. 2003, 7, 475–489. [Google Scholar] [CrossRef]
- Maenhout, P.J. Robust portfolio rules and asset pricing. Rev. Financ. Stud. 2004, 17, 951–983. [Google Scholar] [CrossRef]
- Crandall, M.G.; Ishii, H.; Lions, P.-L. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 1992, 27, 1–67. [Google Scholar] [CrossRef]
- Bahlali, K.; Eddahbi, M.; Ouknine, Y. Solvability of some quadratic BSDEs without exponential moments. C. R. Math. 2013, 351, 229–233. [Google Scholar] [CrossRef]
- Bahlali, K. Solving Unbounded Quadratic BSDEs by a Domination Method. Available online: https://arxiv.org/pdf/1903.11325 (accessed on 1 June 2021).
- Bahlali, K.; Essaky, E.; Hassani, M. Existence and uniqueness of multidimensional BSDEs and of systems of degenerate PDEs with superlinear growth generator. SIAM J. Math. Anal. 2015, 47, 4251–4288. [Google Scholar] [CrossRef]
- Yang, H. Lp Solutions of Quadratic BSDEs. Available online: https://arxiv.org/pdf/1506.08146v1.pdf (accessed on 1 June 2021).
- Bri, P.; Delyon, B.; Hu, Y.; Pardoux, E.; Stoica, L. Lp solutions of backward stochastic differential equations. Stoch. Process. Appl. 2003, 108, 109–129. [Google Scholar]
- Fan, S.; Hu, Y. Well-posedness of scalar BSDEs with sub-quadratic generators and related PDEs. Stoch. Process. Appl. 2021, 131, 21–50. [Google Scholar] [CrossRef]
- Delbaen, F.; Hu, Y.; Richou, A. On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions. Ann. Inst. Henri Poincaré Probab. Stat. 2011, 47, 559–574. [Google Scholar] [CrossRef]
- Lepeltier, J.P.; San Martin, J. Backward stochastic differential equations with continuous coefficient. Stat. Probab. Lett. 1997, 32, 425–430. [Google Scholar] [CrossRef]
- El Karoui, N.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Barles, G.; Buckdahn, R.; Pardoux, E. Backward stochastic differential equations and integral-partial differential equations. Stochastics 1997, 60, 57–83. [Google Scholar] [CrossRef]
- Bardi, M.; Dolcetta, I.C. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations; Birkhäuser: Boston, MA, USA, 1997; Volume 12, ISBN 978-0-8176-4754-4. [Google Scholar]
- Lions, P.L. Optimal control of diffusion processes and Hamilton–Jacobi–Bellman equations part 2: Viscosity solutions and uniqueness. Comm. Partial Differ. Equ. 1983, 8, 1229–1276. [Google Scholar] [CrossRef]
- Hansen, L.P.; Sargent, T.J. Discounted linear exponential quadratic gaussian control. IEEE Trans. Autom. Control. 1995, 40, 968–971. [Google Scholar] [CrossRef]
- Hansen, L.P.; Sargent, T.J.; Turmuhambetova, G.; Williams, N. Robustness and Uncertainty Aversion. Available online: https://pages.stern.nyu.edu/~dbackus/Exotic/1Robustness/HSTW%20robust%20Apr%2002.pdf (accessed on 1 June 2021).
- Yang, Z.; Liang, G.; Zhou, C. Constrained portfolio-consumption strategies with uncertain parameters and borrowing costs. Math. Financ. Econ. 2019, 13, 393–427. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, Q. Robust consumption portfolio optimization with stochastic differential utility. Automatica 2021, 133, 109835. [Google Scholar] [CrossRef]
- Peng, S. Backward SDE and related g-expectation. In Backward Stochastic Differential Equations; Pitman Research Notes in Mathematics Series, No. 364; Karoui, N.E., Mazliak, L., Eds.; Longman: Essex, UK, 1997; pp. 141–159. [Google Scholar]
- Yuan, H.; Zhu, Q. The well-posedness and stabilities of mean-field stochastic differential equations driven by G-Brownian motion. SIAM J. Control Optim. 2025, 63, 596–624. [Google Scholar] [CrossRef]
- Bollweg, K.W.G.; Meyer-Brandis, T. Mean-field stochastic differential equations driven by G-Brownian motion. Probab. Uncertain. Quant. Risk 2025, 10, 241–264. [Google Scholar] [CrossRef]
- Zhu, Q. Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes. IEEE Trans. Autom. Control. 2024, 70, 1176–1183. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Jia, G. Quadratic BSDEs with Singular Generators and Unbounded Terminal Conditions: Theory and Applications. Mathematics 2025, 13, 2292. https://doi.org/10.3390/math13142292
Wang W, Jia G. Quadratic BSDEs with Singular Generators and Unbounded Terminal Conditions: Theory and Applications. Mathematics. 2025; 13(14):2292. https://doi.org/10.3390/math13142292
Chicago/Turabian StyleWang, Wenbo, and Guangyan Jia. 2025. "Quadratic BSDEs with Singular Generators and Unbounded Terminal Conditions: Theory and Applications" Mathematics 13, no. 14: 2292. https://doi.org/10.3390/math13142292
APA StyleWang, W., & Jia, G. (2025). Quadratic BSDEs with Singular Generators and Unbounded Terminal Conditions: Theory and Applications. Mathematics, 13(14), 2292. https://doi.org/10.3390/math13142292