Space-Time Finite Element Tensor Network Approach for the Time-Dependent Convection–Diffusion–Reaction Equation with Variable Coefficients
Abstract
1. Introduction
1.1. Time-Dependent 3D Convection–Diffusion–Reaction Problem
1.2. Classical Methods for Solving CDR
1.3. Mitigating the Curse of Dimensionality
2. Space-Time Finite Element Formulation of CDR
2.1. Space-Time Weak Formulation
2.2. Finite Element Approximation
Local Estimates
2.3. Local and Global Interpolation Operators
3. Tensor-Train Decomposition
3.1. Tensor-Train
3.2. Linear Operators in the TT-Matrix Format
3.3. TT-Cross Interpolation
3.4. Quantized Tensor-Train Format
4. Tensorization of the FEM
4.1. Local One-Dimensional Mass, Stiffness, and Time-Derivative Matrices
4.2. Local Discretization of the Variational Form
4.2.1. Discretization of the Time-Derivative Term, , on a Local Four-Dimensional Hypercube
4.2.2. Discretization of the Diffusion Term, , on the Four-Dimensional Hypercube, with a Constant Diffusion Coefficient,
4.2.3. Discretization of the Diffusion Term, , on the Four-Dimensional Hypercube, with a Non-Constant Diffusion Function
4.2.4. Discretization of the Convection Term, , on the Four-Dimensional Hypercube, with a Non-Constant Convection Function
4.2.5. Discretization of the Reaction Term, , on the Four-Dimensional Hypercube
4.2.6. Discretization of the Loading Term, , on the Four-Dimensional Hypercube
5. Assembly of Global Matrices
5.1. Assembly for Terms with Constant Coefficients
5.2. Assembly for Terms with Variable Coefficients
5.2.1. Assembly of , When the Diffusion Coefficient Depends on Space-Time Variables, but Enables a Separation of Variables
5.3. Assembly for the Convection Term , on the Four-Dimensional Hypercube
5.4. Assembly for the Reaction Term on the Four-Dimensional Hypercube
5.5. The Global System
6. Tensorization of the Weak-Form of CDR
6.1. Transformation of the CDR Discretization into TT and QTT Formats
6.2. Construction of the TT Format for Linear System Components
- TT format of , : From the formulation in Equation (47), the global temporal operator in the TT-matrix format acting only on the interior nodes is constructed as follows:
- TT format of , : From the formulation in Equation (60), the diffusion operator in the TT-matrix format is constructed as follows:
- TT format of , : Following the formulation in Equation (69), the convection operator in the TT-matrix format is constructed as follows:
- TT format of , : Following the formulation in Equation (70), the reaction term is constructed as follows:
- TT format of , : From Equation (48), the loading term is constructed as follows:The TT format of the loading term is approximated by the cross-interpolation algorithm [52].
- TT format of the boundary term, : The boundary and initial conditions are enforced by the boundary term, which will map from all nodes to only interior nodes. In fact, we constructed a map that enforces the boundary condition in each equation of the system only corresponding to the interior nodes. This approach is very convenient for the TT modification, as it only requires matrix–vector multiplication. The detailed construction of is included in Appendix B.
6.3. Construction of the QTT Format for Linear System Components
7. Extension of the Method to Higher Orders and Dimensions
8. Numerical Experiments
8.1. TT-Ranks of the Diffusion Operator
8.2. Three-Dimensional Poisson Equation
8.3. Three-Dimensional CDR Equation
8.4. Three-Dimensional CDR Equation with a Nonlinear Loading Term
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Notations and Definitions
Appendix A.1. Notation Table
Symbol | Description |
---|---|
Spatial domain in | |
or | Time interval |
Space-time domain | |
U | Trial space: |
V | Test space: |
Discrete projection operator | |
Nodal basis functions | |
TT | Tensor-Train format |
QTT | Quantized Tensor-Train format |
TT-core tensor in TT decomposition | |
TT-rank between the k-th and -th TT-core | |
norm | |
TT Tensor format of solution | |
QTT Tensor format of solution | |
Lagrange interpolation operator | |
Loss function in TT-Newton method | |
Partial derivative of u with respect to time t |
Appendix A.2. Kronecker Product
Appendix A.3. The Tensor Product
Appendix B. TT Format Construction of the Boundary Term F bd,TT
Appendix C. QTT Format Construction
Appendix D. Discrete Inf-Sup Condition
Appendix D.1. Construction of Approximate Projection Operator
Appendix D.2. Proof of Theorem 3
Appendix E. Convergence Analysis (Proof of Theorem 4)
References
- John, V.; Schmeyer, E. Finite element methods for time-dependent convection–diffusion–reaction equations with small diffusion. Comput. Methods Appl. Mech. Eng. 2008, 198, 475–494. [Google Scholar] [CrossRef]
- John, V.; Novo, J. Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 2011, 49, 1149–1176. [Google Scholar] [CrossRef]
- Roos, H.G. Robust Numerical Methods for Singularly Perturbed Differential Equations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Knobloch, P.; Tobiska, L. The P 1 mod element: A new nonconforming finite element for convection-diffusion problems. SIAM J. Numer. Anal. 2003, 41, 436–456. [Google Scholar] [CrossRef]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; SIAM: Philadelphia, PA, USA, 2002. [Google Scholar]
- Shu, C.W. Discontinuous Galerkin methods: General approach and stability. Numer. Solut. Partial Differ. Equ. 2009, 201, 149–201. [Google Scholar]
- Ayuso, B.; Marini, L.D. Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 2009, 47, 1391–1420. [Google Scholar] [CrossRef]
- Bui-Thanh, T.; Demkowicz, L.; Ghattas, O. A unified discontinuous Petrov–Galerkin method and its analysis for Friedrichs’ systems. SIAM J. Numer. Anal. 2013, 51, 1933–1958. [Google Scholar] [CrossRef]
- Houston, P.; Roggendorf, S.; van der Zee, K.G. Eliminating Gibbs phenomena: A non-linear Petrov–Galerkin method for the convection–diffusion–reaction equation. Comput. Math. Appl. 2020, 80, 851–873. [Google Scholar] [CrossRef]
- da Veiga, L.B.; Dassi, F.; Lovadina, C.; Vacca, G. SUPG-stabilized virtual elements for diffusion-convection problems: A robustness analysis. ESAIM Math. Model. Numer. Anal. 2021, 55, 2233–2258. [Google Scholar] [CrossRef]
- Gharibi, Z.; Dehghan, M. Convergence analysis of weak Galerkin flux-based mixed finite element method for solving singularly perturbed convection-diffusion-reaction problem. Appl. Numer. Math. 2021, 163, 303–316. [Google Scholar] [CrossRef]
- Adak, D.; Truong, D.P.; Manzini, G.; Rasmussen, K.O.; Alexandrov, B.S. Tensor Network Space-Time Spectral Collocation Method for Time Dependent Convection-Diffusion-Reaction Equations. arXiv 2024, arXiv:2402.18073. [Google Scholar] [CrossRef]
- Arrutselvi, M.; Natarajan, E.; Natarajan, S. Virtual element method for the quasilinear convection-diffusion-reaction equation on polygonal meshes. Adv. Comput. Math. 2022, 48, 78. [Google Scholar] [CrossRef]
- Boffi, D.; Brezzi, F.; Fortin, M. Mixed Finite Element Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 44. [Google Scholar]
- Steinbach, O. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Andreev, R. Stability of sparse space–time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 2013, 33, 242–260. [Google Scholar] [CrossRef]
- Stevenson, R.; Westerdiep, J. Stability of Galerkin discretizations of a mixed space–time variational formulation of parabolic evolution equations. IMA J. Numer. Anal. 2021, 41, 28–47. [Google Scholar] [CrossRef]
- Langer, U.; Steinbach, O.; Tröltzsch, F.; Yang, H. Space-time finite element discretization of parabolic optimal control problems with energy regularization. SIAM J. Numer. Anal. 2021, 59, 675–695. [Google Scholar] [CrossRef]
- Cangiani, A.; Dong, Z.; Georgoulis, E.H. hp-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 2017, 39, A1251–A1279. [Google Scholar] [CrossRef]
- Gomez, S.; Mascotto, L.; Moiola, A.; Perugia, I. Space-time virtual elements for the heat equation. SIAM J. Numer. Anal. 2024, 62, 199–228. [Google Scholar] [CrossRef]
- Gómez, S.; Mascotto, L.; Perugia, I. Design and performance of a space-time virtual element method for the heat equation on prismatic meshes. Comput. Methods Appl. Mech. Eng. 2024, 418, 116491. [Google Scholar] [CrossRef]
- Adak, D.; Danis, M.; Truong, D.P.; Rasmussen, K.Ø.; Alexandrov, B.S. Tensor Network Space-Time Spectral Collocation Method for Solving the Nonlinear Convection Diffusion Equation. arXiv 2024, arXiv:2406.02505. [Google Scholar]
- Krebs, J.R.; Anderson, J.E.; Hinkley, D.; Neelamani, R.; Lee, S.; Baumstein, A.; Lacasse, M.D. Fast full-wavefield seismic inversion using encoded sources. Geophysics 2009, 74, WCC177–WCC188. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Leugering, G.; Benner, P.; Engell, S.; Griewank, A.; Harbrecht, H.; Hinze, M.; Rannacher, R.; Ulbrich, S. Trends in PDE Constrained Optimization; Springer: Cham, Switzerland, 2014; Volume 165. [Google Scholar]
- Gunzburger, M.D.; Peterson, J.S.; Shadid, J.N. Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. Eng. 2007, 196, 1030–1047. [Google Scholar] [CrossRef]
- Oseledets, I.; Tyrtyshnikov, E. TT-cross approximation for multidimensional arrays. Linear Algebra Its Appl. 2010, 432, 70–88. [Google Scholar] [CrossRef]
- Kazeev, V.A.; Khoromskij, B.N.; Tyrtyshnikov, E.E. Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity. SIAM J. Sci. Comput. 2013, 35, A1511–A1536. [Google Scholar] [CrossRef]
- Kornev, E.; Dolgov, S.; Perelshtein, M.; Melnikov, A. TetraFEM: Numerical Solution of Partial Differential Equations Using Tensor Train Finite Element Method. Mathematics 2024, 12, 3277. [Google Scholar] [CrossRef]
- Steinbach, O. Space-time finite element methods for parabolic problems. Comput. Methods Appl. Mat. 2015, 15, 551–566. [Google Scholar] [CrossRef]
- Schwab, C.; Stevenson, R. Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 2009, 78, 1293–1318. [Google Scholar] [CrossRef]
- Oseledets, I.V. Tensor-train decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [Google Scholar] [CrossRef]
- Bachmayr, M.; Schneider, R.; Uschmajew, A. Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations. Found. Comput. Math. 2016, 16, 1423–1472. [Google Scholar] [CrossRef]
- Truong, D.P.; Ortega, M.I.; Boureima, I.; Manzini, G.; Rasmussen, K.O.; Alexandrov, B.S. Tensor networks for solving the time-independent Boltzmann neutron transport equation. J. Comput. Phys. 2024, 507, 112943. [Google Scholar] [CrossRef]
- Goreinov, S.A.; Tyrtyshnikov, E.E.; Zamarashkin, N.L. A theory of pseudoskeleton approximations. Linear Algebra Appl. 1997, 261, 1–21. [Google Scholar] [CrossRef]
- Mahoney, M.W.; Drineas, P. CUR matrix decompositions for improved data analysis. Proc. Natl. Acad. Sci. USA 2009, 106, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Goreinov, S.A.; Oseledets, I.V.; Savostyanov, D.V.; Tyrtyshnikov, E.E.; Zamarashkin, N.L. How to find a good submatrix. In Matrix Methods: Theory, Algorithms and Applications: Dedicated to the Memory of Gene Golub; World Scientific: Singapore, 2010; pp. 247–256. [Google Scholar]
- Mikhalev, A.; Oseledets, I.V. Rectangular maximum-volume submatrices and their applications. Linear Algebra Appl. 2018, 538, 187–211. [Google Scholar] [CrossRef]
- Savostyanov, D.; Oseledets, I. Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In Proceedings of the The 2011 International Workshop on Multidimensional (nD) Systems, Poitiers, France, 5–7 September 2011; pp. 1–8. [Google Scholar]
- Oseledets, I.V.; Savostianov, D.V.; Tyrtyshnikov, E.E. Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. 2008, 30, 939–956. [Google Scholar] [CrossRef]
- Sozykin, K.; Chertkov, A.; Schutski, R.; Phan, A.H.; Cichoki, A.S.; Oseledets, I. TTOpt: A maximum volume quantized tensor train-based optimization and its application to reinforcement learning. Adv. Neural. Inf. Process Syst. 2022, 35, 26052–26065. [Google Scholar]
- Savostyanov, D.V. Quasioptimality of maximum-volume cross interpolation of tensors. Linear Algebra Its Appl. 2014, 458, 217–244. [Google Scholar] [CrossRef]
- Holtz, S.; Rohwedder, T.; Schneider, R. The alternating linear scheme for tensor optimization in the tensor train format. SIAM J. Sci. Comput. 2012, 34, A683–A713. [Google Scholar] [CrossRef]
- Oseledets, I.V.; Dolgov, S.V. Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci. Comput. 2012, 34, A2718–A2739. [Google Scholar] [CrossRef]
- Dolgov, S.V.; Savostyanov, D.V. Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 2014, 36, A2248–A2271. [Google Scholar] [CrossRef]
- Dolgov, S.; Savostyanov, D. Parallel cross interpolation for high-precision calculation of high-dimensional integrals. Comput. Phys. Commun. 2019, 246, 106869. [Google Scholar] [CrossRef]
- Kazeev, V.; Reichmann, O.; Schwab, C. Low-rank tensor structure of linear diffusion operators in the TT and QTT formats. Linear Algebra Its Appl. 2013, 438, 4204–4221. [Google Scholar] [CrossRef]
- Khoromskij, B.N.; Oseledets, I.V. QTT approximation of elliptic solution operators in higher dimensions. Russ. J. Numer. Anal. Math. Model. 2011, 26, 303–322. [Google Scholar] [CrossRef]
- Vysotsky, L.; Rakhuba, M. Tensor rank bounds and explicit QTT representations for the inverses of circulant matrices. Numer. Linear Algebra Appl. 2023, 30, e2461. [Google Scholar] [CrossRef]
- Kazeev, V.A.; Khoromskij, B.N. Low-rank explicit QTT representation of the Laplace operator and its inverse. SIAM J. Matrix Anal. Appl. 2012, 33, 742–758. [Google Scholar] [CrossRef]
- Oseledets, I.V. Approximation of 2d × 2d matrices using tensor decomposition. SIAM J. Matrix Anal. Appl. 2010, 31, 2130–2145. [Google Scholar] [CrossRef]
- Oseledets, I. TT-Toolbox, Version 2.2. 2023. Available online: https://github.com/oseledets/TT-Toolbox (accessed on 8 July 2025).
- Fraschini, S.; Kazeev, V.; Perugia, I. Symplectic QTT-FEM solution of the one-dimensional acoustic wave equation in the time domain. arXiv 2024, arXiv:2411.11321. [Google Scholar]
- Dolgov, S.V.; Khoromskij, B.N.; Oseledets, I.V. Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker–Planck equation. SIAM J. Sci. Comput. 2012, 34, A3016–A3038. [Google Scholar] [CrossRef]
- Holst, M.J. Multilevel Methods for the Poisson-Boltzmann Equation. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1993. [Google Scholar]
- Rodgers, A.; Dektor, A.; Venturi, D. Adaptive integration of nonlinear evolution equations on tensor manifolds. J. Sci. Comput. 2022, 92, 39. [Google Scholar] [CrossRef]
- Rodgers, A.; Venturi, D. Implicit integration of nonlinear evolution equations on tensor manifolds. J. Sci. Comput. 2023, 97, 33. [Google Scholar] [CrossRef]
- Danis, M.E.; Truong, D.; Boureima, I.; Korobkin, O.; Rasmussen, K.; Alexandrov, B. Tensor-Train WENO Scheme for Compressible Flows. arXiv 2024, arXiv:2405.12301. [Google Scholar] [CrossRef]
- Danis, M.E.; Truong, D.P.; DeSantis, D.; Petersen, M.; Rasmussen, K.O.; Alexandrov, B.S. High-order Tensor-Train Finite Volume Method for Shallow Water Equations. arXiv 2024, arXiv:2408.03483. [Google Scholar] [CrossRef]
- Demkowicz, L.; Gopalakrishnan, J. A Class of Discontinuous Petrov-Galerkin Methods. Part I: The Transport Equation. Comput. Methods Appl. Mech. Eng. 2010, 199, 1558–1572. [Google Scholar] [CrossRef]
- Demkowicz, L.; Gopalakrishnan, J. A class of discontinuous Petrov–Galerkin methods. Part II: Optimal test functions. Numer. Methods Partial Differ. Equ. 2011, 27, 70–105. [Google Scholar] [CrossRef]
- Roberts, N.V.; Miller, S.T.; Bond, S.D.; Cyr, E.C. An implicit-in-time DPG formulation of the 1D1V Vlasov-Poisson equations. Comput. Math. Appl. 2024, 154, 103–119. [Google Scholar] [CrossRef]
- Broersen, D.; Dahmen, W.; Stevenson, R.P. On the Stability of DPG Formulations of Transport Equations. Math. Comput. 2018, 87, 1051–1082. [Google Scholar] [CrossRef]
- Demkowicz, L.F.; Roberts, N.V.; Matute, J.M. The DPG Method for the Convection-Reaction Problem, Revisited. Comput. Methods Appl. Math. 2023, 23, 93–125. [Google Scholar] [CrossRef]
- Sande, E.; Manni, C.; Speleers, H. Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis. Numer. Math. 2020, 144, 889–929. [Google Scholar] [CrossRef]
- Brenner, S.C. The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2008. [Google Scholar]
- Chen, C.M.; Larsson, S.; Zhang, N.Y. Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation. IMA J. Numer. Anal. 1989, 9, 507–524. [Google Scholar] [CrossRef]
- Adak, D.; Natarajan, S. Virtual element method for semilinear sine–Gordon equation over polygonal mesh using product approximation technique. Math. Comput. Simul. 2020, 172, 224–243. [Google Scholar] [CrossRef]
TT-tol | Ranks | TT-Ranks of Diffusion Operator | |||
---|---|---|---|---|---|
1 | [1, 1] | [2, 2] | [2, 2] | [2, 2] | |
[2, 2] | [4, 4] | [4, 4] | [4, 4] | ||
[3, 2] | [6, 4] | [6, 4] | [6, 4] | ||
[5, 5] | [8, 8] | [8, 8] | [8, 8] | ||
[9, 9] | [15, 15] | [15, 15] | [15, 15] |
N | Full Grid | TT | QTT | |||||
---|---|---|---|---|---|---|---|---|
Error | Time (s) | Error | Time (s) | Comp. | Error | Time (s) | Comp. | |
9 | 0.20 | – | – | – | – | – | – | |
17 | 1.67 | 0.30 | 0.45 | |||||
33 | 102.99 | 0.60 | 0.89 | |||||
65 | – | – | 1.64 | 2.69 | ||||
129 | – | – | 6.53 | 6.97 | ||||
257 | – | – | 60.50 | 18.94 |
N | Full Grid | TT | QTT | |||||
---|---|---|---|---|---|---|---|---|
Error | Time (s) | Error | Time (s) | Comp. | Error | Time (s) | Comp. | |
5 | 0.18 | – | – | – | – | – | – | |
9 | 0.67 | 0.30 | 0.51 | |||||
17 | 211.07 | 0.52 | 0.75 | |||||
33 | – | – | 1.14 | 1.84 | ||||
65 | – | – | 2.57 | 3.82 | ||||
129 | – | – | 6.20 | 7.73 | ||||
257 | – | – | 23.92 | 15.04 | ||||
513 | – | – | 143.47 | 34.05 |
N | Full Grid | TT | QTT | |||||
---|---|---|---|---|---|---|---|---|
Error | Time (s) | Error | Time (s) | Iter | Error | Time (s) | Iter | |
5 | 0.18 | – | – | – | – | – | – | |
9 | 2.16 | 0.29 | 4 | 0.76 | 3 | |||
17 | 1435.28 | 0.44 | 4 | 2.65 | 4 | |||
33 | – | – | 1.00 | 4 | 4.93 | 4 | ||
65 | – | – | 3.29 | 5 | 16.05 | 5 | ||
129 | – | – | 10.10 | 5 | 47.84 | 6 | ||
257 | – | – | 22.60 | 4 | 52.27 | 6 | ||
513 | – | – | 113.68 | 4 | 76.57 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adak, D.; Truong, D.P.; Vuchkov, R.; De, S.; DeSantis, D.; Roberts, N.V.; Rasmussen, K.Ø.; Alexandrov, B.S. Space-Time Finite Element Tensor Network Approach for the Time-Dependent Convection–Diffusion–Reaction Equation with Variable Coefficients. Mathematics 2025, 13, 2277. https://doi.org/10.3390/math13142277
Adak D, Truong DP, Vuchkov R, De S, DeSantis D, Roberts NV, Rasmussen KØ, Alexandrov BS. Space-Time Finite Element Tensor Network Approach for the Time-Dependent Convection–Diffusion–Reaction Equation with Variable Coefficients. Mathematics. 2025; 13(14):2277. https://doi.org/10.3390/math13142277
Chicago/Turabian StyleAdak, Dibyendu, Duc P. Truong, Radoslav Vuchkov, Saibal De, Derek DeSantis, Nathan V. Roberts, Kim Ø. Rasmussen, and Boian S. Alexandrov. 2025. "Space-Time Finite Element Tensor Network Approach for the Time-Dependent Convection–Diffusion–Reaction Equation with Variable Coefficients" Mathematics 13, no. 14: 2277. https://doi.org/10.3390/math13142277
APA StyleAdak, D., Truong, D. P., Vuchkov, R., De, S., DeSantis, D., Roberts, N. V., Rasmussen, K. Ø., & Alexandrov, B. S. (2025). Space-Time Finite Element Tensor Network Approach for the Time-Dependent Convection–Diffusion–Reaction Equation with Variable Coefficients. Mathematics, 13(14), 2277. https://doi.org/10.3390/math13142277