Detection of Citrus Huanglongbing in Natural Field Conditions Using an Enhanced YOLO11 Framework
Abstract
1. Introduction
- We constructed the Multi-Symptom HLB Leaf Dataset (MS-HLBD), which encompasses samples from multiple regions, various shooting angles, different seasons, and diverse time periods. This significantly enhances the diversity of the dataset, overcoming the limitations of existing datasets in terms of regional and seasonal coverage, and provides a richer foundation of image features for model training and evaluation.
- We propose the DCH-YOLO11 model, which comprehensively improves the detection capability for multiple HLB symptom types and enhances overall generalization performance. Building upon the original YOLO11 framework, three key innovative modules are integrated: the C3k2 Dynamic Feature Fusion (C3k2_DFF) module strengthens the interaction between global and local features, thereby improving the detection of subtle early-stage lesions; the C2PSA Context Anchor Attention (C2PSA_CAA) module highlights disease details in complex leaf vein regions, increasing the model’s ability to distinguish various symptom types under challenging backgrounds; and the High-efficiency Dynamic Feature Pyramid Network (HDFPN) module optimizes multi-scale feature fusion, enhancing detection accuracy and robustness across different object scales. These targeted enhancements address existing shortcomings in feature extraction, fine-grained recognition, and multi-scenario adaptability.
2. Materials and Methods
2.1. Data Collection
2.2. Data Augmentation and Dataset Preparation
3. Experimental Methods
3.1. Improved YOLO11 Model
3.1.1. C3k2_DFF
3.1.2. C2PSA_CAA
3.1.3. HDFPN
3.2. Experimental Platform and Model Evaluation Metrics
3.2.1. Experimental Environment and Parameter Settings
3.2.2. Evaluation Metrics
4. Results and Analysis
4.1. DCH-YOLO11 Model Training Results
4.2. Comparative Experiments
4.3. Ablation Experiments
4.4. Generalization Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A | Accuracy |
AP | Average Precision |
AvgPool | Average Pooling |
CAA | Context Anchor Attention |
CA | Channel Attention |
CNN | Convolutional Neural Network |
DFF | Dynamic Feature Fusion |
DWConv | Depthwise Convolution |
F1 | F1 score |
FLOPs | Floating Point Operations |
FPS | Frames Per Second |
FN | False Negative |
FP | False Positive |
FPN | Feature Pyramid Network |
HDFPN | High-efficiency Dynamic Feature Pyramid Network |
Hl | Healthy |
HLB | Huanglongbing |
HLB_bm | HLB blotchy mottling |
HLB_y | HLB yellowing |
HLB_Zd | HLB Zinc deficiency |
HSFPN | High-Level Screening-feature Fusion Pyramid Network |
MaxPool | Maximum Pooling |
MS-HLBD | Multi-Symptom HLB Leaf Dataset |
mAP | Mean Average Precision |
P | Precision |
PCR | Polymerase Chain Reaction |
qPCR | Real-Time Fluorescence Quantitative PCR |
R | Recall |
SFF | Select Feature Fusion |
SVM | Support Vector Machines |
TN | True Negative |
TP | True Positive |
YOLO | You Only Look Once |
References
- Huang, C.; Chen, L.; Xiu, B.; Sun, L.; Gao, J.; Wang, Z.; Ye, F.; Mubasher, H.; Shen, B.; Qiu, D.; et al. Mass Production Technology of Tamarixia radiata, Predominant Parasitoid of Diaphorina citri, Based on Citrus reticulata Blanco. Chin. J. Biol. Control 2022, 38, 791–796. [Google Scholar]
- Limayem, A.; Martin, E.M.; Shankar, S. Study on the citrus greening disease: Current challenges and novel therapies. Microb. Pathog. 2024, 192, 106688. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, C.; Yan, Y.; Wang, Y.; Li, R. Cloning and Expression of a Thioredoxin Gene CsTRXh1 from Citrus sinensis. Fujian J. Agric. Sci. 2022, 37, 880–885. [Google Scholar]
- Wu, F.N.; Xie, S.J.; Zhao, Y.X.; Xu, P.B.; Li, J.J.; Xiao, C.J.; Lin, X.N.; Yang, S.H.; Cen, Y.J.; Huang, J.J. Effects of host plant species on the infection ability of “Candidatus Liberibacter asiaticus” and adaptability of Diaphorina citri. J. Environ. Entomol. 2023, 45, 63–72. [Google Scholar]
- Thakuria, D.; Chaliha, C.; Dutta, P.; Sinha, S.; Uzir, P.; Singh, S.B.; Hazarika, S.; Sahoo, L.; Kharbikar, L.; Singh, D. Citrus Huanglongbing (HLB): Diagnostic and management options. Physiol. Mol. Plant Pathol. 2023, 125, 102016. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, G.; He, X.; Liu, Q.; Li, D. Research progress on detection and control method of citrus Huanglongbing. Sci. Technol. Rev. 2024, 42, 75–83. (In Chinese) [Google Scholar]
- Xu, Q.; Su, Y.; Sun, L.; Cai, J. Detection of citrus Huanglongbing at different stages of infection using a homemade electronic nose system. Comput. Electron. Agric. 2025, 229, 109845. [Google Scholar] [CrossRef]
- Keremane, M.L.; McCollum, T.G.; Roose, M.L.; Lee, R.F.; Ramadugu, C. An improved reference gene for detection of “Candidatus Liberibacter asiaticus” associated with citrus huanglongbing by qPCR and digital droplet PCR assays. Plants 2021, 10, 2111. [Google Scholar] [CrossRef]
- Frederick, Q.; Burks, T.; Yadav, P.K.; Qin, J.; Kim, M.; Dewdney, M. Classifying adaxial and abaxial sides of diseased citrus leaves with selected hyperspectral bands and YOLOv8. Smart Agric. Technol. 2024, 9, 100600. [Google Scholar] [CrossRef]
- Ye, N.; Mai, W.; Qin, F.; Yuan, S.; Liu, B.; Li, Z.; Liu, C.; Wan, F.; Qian, W.; Wu, Z.; et al. Early detection of Citrus Huanglongbing by UAV remote sensing based on MGA-UNet. Front. Plant Sci. 2025, 16, 1503645. [Google Scholar] [CrossRef]
- Xu, Q.; Cai, J.R.; Zhang, W.; Bai, J.W.; Li, Z.Q.; Tan, B.; Sun, L. Detection of citrus Huanglongbing (HLB) based on the HLB-induced leaf starch accumulation using a home-made computer vision system. Biosyst. Eng. 2022, 218, 163–174. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Xu, H.; Rao, Y.; Jiang, X.; Sun, X. Visual discrimination of citrus HLB based on image features. Vib. Spectrosc. 2019, 102, 103–111. [Google Scholar] [CrossRef]
- Yan, K.; Song, X.; Yang, J.; Xiao, J.; Xu, X.; Guo, J.; Zhu, H.; Lan, Y.; Zhang, Y. Citrus huanglongbing detection: A hyperspectral data-driven model integrating feature band selection with machine learning algorithms. Crop Prot. 2025, 188, 107008. [Google Scholar] [CrossRef]
- Aswini, E.; Vijayakumaran, C. Auto Detector for Huanglongbing Citrus Greening Disease using YOLOV7. In Proceedings of the 2023 World Conference on Communication & Computing (WCONF), Raipur, India, 14–16 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Li, S.; Liang, Q.; Yu, Y.; Chen, Y.; Fu, H.; Zhang, H. Research on Asian citrus psyllid YOLO v8-MC recognition algorithm and insect remote monitoring system. Trans. Chin. Soc. Agric. Mach. 2024, 55, 210–218. (In Chinese) [Google Scholar]
- Lin, Y.; Liang, J.; Liu, S.; Jia, S.; Yu, J.; Hou, Y. Individual identification of citrus Huanglongbing based on UAV visible-light imagery and support vector machine. Southwest China J. Agric. Sci. 2022, 35, 2554–2563. (In Chinese) [Google Scholar]
- Lu, J.; Lin, J.; Huang, Z.; Wang, W.; Qiu, H.; Yang, R.; Chen, P. Identification of citrus fruit infected with Huanglongbing based on Mixup algorithm and convolutional neural network. J. South China Agric. Univ. 2021, 42, 94–101. (In Chinese) [Google Scholar]
- Hakim, A.; Srivastava, A.K.; Hamza, A.; Owais, M.; Habib-ur Rahman, M.; Qadri, S.; Qayyum, M.A.; Ahmad Khan, F.Z.; Mahmood, M.T.; Gaiser, T. Yolo-pest: An optimized YoloV8x for detection of small insect pests using smart traps. Sci. Rep. 2025, 15, 14029. [Google Scholar] [CrossRef]
- Silva, C.E.S.E.; Fragoso, J.B.; Paixão, T.; Alvarez, A.B.; Palomino-Quispe, F. A Low Computational Cost Deep Learning Approach for Localization and Classification of Diseases and Pests in Coffee Leaves. IEEE Access 2025, 13, 71943–71964. [Google Scholar] [CrossRef]
- Jin, S.; Zhou, L.; Zhou, H. CO-YOLO: A lightweight and efficient model for Camellia oleifera fruit object detection and posture determination. Comput. Electron. Agric. 2025, 235, 110394. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, W.; Li, Z.; Gao, T.; Zhao, Q. A YOLOv7-based robotic harvesting system for Agaricus bisporus using a depth camera. Turk. J. Agric. For. 2025, 49, 380–396. [Google Scholar] [CrossRef]
- Goyal, R.; Nath, A.; Niranjan, U.; Sharda, R. Analyzing the performance of deep convolutional neural network models for weed identification in potato fields. Crop Prot. 2025, 188, 107035. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Wu, M.; Zhang, H.; Song, H.; Sun, H.; Li, Y.; Hu, J. Real-time detection of Chinese cabbage seedlings in the field based on YOLO11-CGB. Front. Plant Sci. 2025, 16, 1558378. [Google Scholar] [CrossRef]
- Niu, Z.; Zhao, Y. A Tea Buds Detection Algorithm Based on Improved YOLO11. In Proceedings of the 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Shenzhen, China, 22–24 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1550–1553. [Google Scholar]
- Li, P.; Chen, J.; Chen, Q.; Huang, L.; Jiang, Z.; Hua, W.; Li, Y. Detection and picking point localization of grape bunches and stems based on oriented bounding box. Comput. Electron. Agric. 2025, 233, 110168. [Google Scholar] [CrossRef]
- Bassanezi, R.B.; Belasque, J., Jr.; Montesino, L. Frequency of symptomatic trees removal in small citrus blocks on citrus huanglongbing epidemics. Crop Prot. 2013, 52, 72–77. [Google Scholar] [CrossRef]
- Kwakye, S.; Kadyampakeni, D.M. Micronutrients improve growth and development of HLB-affected citrus trees in Florida. Plants 2022, 12, 73. [Google Scholar] [CrossRef]
- Anzo Hernández, A.; Giménez Mujica, U.J.; Hernández Gracidas, C.A.; Oliveros Oliveros, J.J. Optimizing control parameters for Huanglongbing disease in citrus orchards using SAIR-SI compartmental model, epidemic final size, and genetic algorithms. J. Math. Biol. 2025, 90, 4. [Google Scholar] [CrossRef]
- Silva, L.M.; Martins, E.C.; Ferreira, A.A.P.; Wulff, N.A.; Yamanaka, H. Impedimetric immunosensor versus qPCR for Huanglongbing detection. Talanta 2025, 283, 127132. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Cui, L.; Qian, H.; Li, B.; Wang, X. Linear pattern detection of building groups by integrating dynamic snake convolution with YOLO11. Geocarto Int. 2025, 40, 2471914. [Google Scholar] [CrossRef]
- Wei, J.; Ni, L.; Luo, L.; Chen, M.; You, M.; Sun, Y.; Hu, T. GFS-YOLO11: A Maturity Detection Model for Multi-Variety Tomato. Agronomy 2024, 14, 2644. [Google Scholar] [CrossRef]
- Sapkota, R.; Meng, Z.; Karkee, M. Synthetic meets authentic: Leveraging llm generated datasets for yolo11 and yolov10-based apple detection through machine vision sensors. Smart Agric. Technol. 2024, 9, 100614. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, P.; Zhang, Y.; Marcus, D.S.; Sotiras, A. D-net: Dynamic large kernel with dynamic feature fusion for volumetric medical image segmentation. arXiv 2024, arXiv:2403.10674. [Google Scholar]
- Cai, X.; Lai, Q.; Wang, Y.; Wang, W.; Sun, Z.; Yao, Y. Poly Kernel Inception Network for Remote Sensing Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 27706–27716. [Google Scholar]
- Chen, Y.; Zhang, C.; Chen, B.; Huang, Y.; Sun, Y.; Wang, C.; Fu, X.; Dai, Y.; Qin, F.; Peng, Y.; et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases. Comput. Biol. Med. 2024, 170, 107917. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 7464–7475. [Google Scholar]
- Varghese, R.; Sambath, M. Yolov8: A novel object detection algorithm with enhanced performance and robustness. In Proceedings of the 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 18–19 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Wang, C.Y.; Yeh, I.H.; Mark Liao, H.Y. Yolov9: Learning what you want to learn using programmable gradient information. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024; Springer: Cham, Switzerland, 2024; pp. 1–21. [Google Scholar]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. [Google Scholar]
- Khanam, R.; Hussain, M. Yolov11: An overview of the key architectural enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar]
- Tian, Y.; Ye, Q.; Doermann, D. Yolov12: Attention-centric real-time object detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar]
- Chi, M.; Chen, S.; Huang, T.; Chen, S.; Liang, Y.; Qiu, R. Image datasets of citrus Huanglongbing field symptom recognition. China Sci. Data 2025, 10, 52–61. (In Chinese) [Google Scholar]
Study | Methodology | Advantages | Limitations |
---|---|---|---|
Liu et al. [12] | Image texture classification | Simple; identifies local lesions | Manual feature extraction; weak for complex backgrounds/early symptoms |
Yan et al. [13] | Hyperspectral imaging + Machine Learning | High sensitivity; non-destructive | Expensive; complex; not suitable for large-scale field use |
Aswini et al. [14] | YOLOv7 | Fast; automated | Weak for subtle/diverse symptoms; limited generalization |
Li et al. [15] | YOLOv8-MC | Accurate for pest detection | Cannot detect multiple HLB symptoms; insufficient for disease classification |
Lin et al. [16] | UAV imaging + SVM | Large-scale monitoring | Low resolution; environment-dependent; poor for early symptoms |
Lu et al. [17] | Mixup + CNN | Robust for fruit symptoms | Focused on fruit; limited for leaf symptoms |
Index | Classes | Abbreviation | No Data Augmentation | Data Augmentation |
---|---|---|---|---|
1 | Healthy | Hl | 868 | 1862 |
2 | HLB blotchy mottling | HLB_bm | 954 | 2040 |
3 | HLB Zinc deficiency | HLB_Zd | 924 | 1988 |
4 | HLB yellowing | HLB_y | 824 | 1768 |
5 | Canker | Canker | 729 | 1561 |
Total | 4299 | 9219 |
Parameter | Value |
---|---|
Learning rate | 0.01 |
Momentum | 0.937 |
Weight decay | 0.0005 |
Batch size | 16 |
Epochs | 200 |
Model | P/% | R/% | F1 | MCC | mAP50/% | mAP50-95/% | Parameters |
---|---|---|---|---|---|---|---|
Faster-RCNN | 45.7 | 86.3 | 58.8 | 0.180 | 79.5 | 64.5 | 28,316,308 |
SSD | 91.5 | 78.3 | 84.4 | 0.531 | 84.3 | 72.7 | 4,074,532 |
RT-DETR | 94.1 | 80.1 | 86.5 | 0.509 | 87.8 | 85.8 | 31,994,015 |
YOLOv7-tiny | 92.3 | 80.8 | 86.2 | 0.622 | 89.9 | 85.6 | 6,018,420 |
YOLOv8n | 92.8 | 82.4 | 87.3 | 0.663 | 91.1 | 90.3 | 3,006,623 |
YOLOv9-tiny | 93.5 | 82.5 | 87.7 | 0.657 | 91.5 | 90.8 | 2,618,510 |
YOLOv10n | 93.2 | 81.9 | 87.2 | 0.714 | 90.5 | 88.8 | 2,696,366 |
YOLO11n | 91.4 | 82.8 | 86.9 | 0.684 | 91.3 | 89.9 | 2,583,127 |
YOLOv12n | 91.4 | 83.1 | 87.1 | 0.675 | 91.5 | 89.8 | 2,557,703 |
DCH-YOLO11 | 91.6 | 87.1 | 89.3 | 0.741 | 93.1 | 91.5 | 2,995,667 |
C3k2 _DFF | C2PSA _CAA | HDFPN | P/% | R/% | F1 | MCC | mAP50 /% | mAP50 -95/% | Parameters |
---|---|---|---|---|---|---|---|---|---|
- | - | - | 91.4 | 82.8 | 86.9 | 0.684 | 91.3 | 89.9 | 2,583,127 |
✓ | - | - | 91.3 | 83.7 | 87.3 | 0.702 | 92.0 | 90.5 | 2,779,323 |
- | ✓ | - | 92.5 | 83.5 | 87.8 | 0.699 | 91.8 | 90.0 | 2,569,559 |
- | - | ✓ | 93.3 | 83.1 | 87.9 | 0.707 | 92.0 | 90.6 | 2,813,039 |
✓ | ✓ | - | 91.3 | 84.5 | 87.8 | 0.692 | 92.6 | 90.3 | 2,765,755 |
✓ | - | ✓ | 91.7 | 84.5 | 88.0 | 0.715 | 92.4 | 90.7 | 3,009,235 |
- | ✓ | ✓ | 92.2 | 83.9 | 87.9 | 0.706 | 92.1 | 90.4 | 2,799,471 |
✓ | ✓ | ✓ | 91.6 | 87.1 | 89.3 | 0.741 | 93.1 | 91.5 | 2,995,667 |
Model | P/% | R/% | F1 | mAP50/% | mAP50-95/% | Parameters |
---|---|---|---|---|---|---|
RT-DETR | 80.9 | 82.3 | 81.6 | 80.5 | 73.4 | 31,998,125 |
YOLOv7-tiny | 79.4 | 80.7 | 80.0 | 85.4 | 76.4 | 6,023,832 |
YOLOv8n | 79.2 | 83.6 | 81.3 | 85.6 | 79.2 | 3,007,013 |
YOLOv9-tiny | 80.9 | 81.3 | 81.1 | 86.2 | 80.2 | 2,619,290 |
YOLOv10n | 77.7 | 80.7 | 79.2 | 84.7 | 78.0 | 2,697,146 |
YOLO11n | 78.8 | 84.1 | 81.4 | 86.2 | 79.5 | 2,583,517 |
YOLOv12n | 80.0 | 80.9 | 80.4 | 86.0 | 80.3 | 2,558,093 |
DCH-YOLO11 | 82.7 | 81.8 | 82.2 | 89.4 | 82.6 | 2,997,209 |
C3k2 _DFF | C2PSA _CAA | HDFPN | P/% | R/% | F1 | mAP50 /% | mAP50 -95/% | Parameters |
---|---|---|---|---|---|---|---|---|
- | - | - | 78.8 | 84.1 | 81.4 | 86.2 | 79.5 | 2,583,517 |
✓ | - | - | 79.3 | 85.9 | 82.5 | 87.5 | 80.8 | 2,779,713 |
- | ✓ | - | 79.7 | 85.0 | 82.3 | 86.9 | 80.4 | 2,569,949 |
- | - | ✓ | 78.5 | 85.5 | 81.9 | 87.1 | 81.0 | 2,814,581 |
✓ | ✓ | ✓ | 82.7 | 81.8 | 82.2 | 89.4 | 82.6 | 2,997,209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Xiao, W.; Hu, Z.; Li, X.; Wu, Z. Detection of Citrus Huanglongbing in Natural Field Conditions Using an Enhanced YOLO11 Framework. Mathematics 2025, 13, 2223. https://doi.org/10.3390/math13142223
Cao L, Xiao W, Hu Z, Li X, Wu Z. Detection of Citrus Huanglongbing in Natural Field Conditions Using an Enhanced YOLO11 Framework. Mathematics. 2025; 13(14):2223. https://doi.org/10.3390/math13142223
Chicago/Turabian StyleCao, Liang, Wei Xiao, Zeng Hu, Xiangli Li, and Zhongzhen Wu. 2025. "Detection of Citrus Huanglongbing in Natural Field Conditions Using an Enhanced YOLO11 Framework" Mathematics 13, no. 14: 2223. https://doi.org/10.3390/math13142223
APA StyleCao, L., Xiao, W., Hu, Z., Li, X., & Wu, Z. (2025). Detection of Citrus Huanglongbing in Natural Field Conditions Using an Enhanced YOLO11 Framework. Mathematics, 13(14), 2223. https://doi.org/10.3390/math13142223