Failure Mode and Effects Analysis Integrated with Multi-Attribute Decision-Making Methods Under Uncertainty: A Systematic Literature Review
Abstract
1. Introduction
- The relative importance of the considered RFs, as well as their specific aspects, is not equal.
- Natural language is often employed to assess the relative importance and values of the RFs in order to express the subjective perceptions of decision makers (DMs). It is well known that natural language expressions may lack clear and well-defined meanings. Therefore, using precise numerical values for quantification is not always appropriate. The development of mathematical theories has allowed predefined linguistic expressions to be represented in a fairly quantitative manner. In the analyzed literature, linguistic terms are modeled by (1) fuzzy set theory [11,12,13,14,15,16,17,18], (2) rough set theory [19], (3) cloud theory [20], and (4) Fuzzy Belief Structure (FBS) [21,22], among others.
- Many authors express doubts regarding the reliability of the mathematical formula used for calculating the RPN. Numerous studies emphasize different approaches proposed to address the shortcomings of FMEA, including methods that integrate (1) Multi-Attribute Decision-Making (MADM) techniques combined with fuzzy set theory [23,24] and rough set theory [25,26], as well as (2) methodological modifications defined in the latest FMEA manual for the automotive industry, published in 2019, titled the FEMA Handbook [27]. Consequently, improving the efficiency and effectiveness of FMEA has attracted increasing attention from both academic and practical domains. Many authors emphasize that the shortcomings of FMEA may negatively impact its reliability and consistency.
2. Research Methodology
- These databases include journals and publications from various fields such as engineering, medicine, natural sciences, and others. In other words, they are not limited to a single scientific discipline, unlike some other databases.
- They represent the most prominent databases of scientific journals and publications. All journals indexed in these databases must be peer-reviewed and undergo a rigorous quality control process.
- All journals indexed in these databases have a review process, which serves as a guarantee that the paper has undergone an initial check and that the research is validated.
- They contain adequate and accurate data about authors, affiliations, publications, and journals.
- Fuzzy FMEA;
- Fuzzy FMEA MADM;
- FMEA + name of each individual MADM method;
- FMEA + name of each individual approach for describing uncertainty.
- The FMEA framework was not applied;
- No approach for modeling uncertainty was used;
- No MADM method was applied, nor the RPN parameter.
3. Modeling of Risk Factors
3.1. Analysis of Risk Factors and Their Aspects
3.2. Modeling of Uncertainties
3.2.1. Fuzzy Set Theory
3.2.2. Rough Set Theory
3.2.3. Cloud Theory
3.2.4. Other Approaches
4. Failure Mode and Effect Analysis Integrated with Multi-Attribute Decision-Making Under Uncertainty
4.1. Determination of Weight Vectors
4.1.1. Analytic Hierarchy Process
4.1.2. Ranking-Based Procedure Using Fuzzy Numbers
4.1.3. Best Worst Method
4.1.4. Decision-Making and Trial Evaluation Laboratory
4.1.5. Step-Wise Weight Assessment Ratio Analysis
4.1.6. Entropy Method
4.1.7. Subjective Methods
4.1.8. Other Methods
4.2. Determination of Priorities
4.2.1. Decision Matrix Under Uncertainty
4.2.2. Aggregated Decision Matrix Under Uncertainty
- The weighted operator: (i) with FNs and IT2FNs [73,120], (ii) the interval intuitionistic weighted averaging operator [113,128], (iii) with PFSs [132] and the interval-valued Pythagorean fuzzy priority power weight average operator [133], (iv) the picture fuzzy weighted arithmetic average operator [34], (v) with FFSs [61], (vi) the single-valued neutrosophic weighted averaging operator [116], the interval-valued neutrosophic weighted averaging operator [111], and the spherical weighted geometric mean [41], (vii) the interval-valued q-rung orthopair fuzzy weighted geometric operator [36], (viii) the cloud weighted averaging operator [33], (ix) the 2-tuple weighted average operator [75], and (x) the probabilistic interval-valued hesitant fuzzy weighted average operator [32].
4.2.3. Normalization Procedures
4.2.4. Outranking Methods
Preference Ranking Organization METHod for Enrichment of Evaluations
Decision-MAking Trial and Evaluation Laboratory
Interactive and Multi-Criteria Decision-Making Method
Measurement of Alternatives and Ranking According to COmpromise Solution
Organization, Ranking, and Synthesis of Relational Data
4.2.5. Distance-Based Methods
Technique for Order Preference by Similarity to Ideal Solution
Multi-Criteria Optimization and Compromise Solution
Multi-Attributive Border Approximation Area Comparison
Multi-Attributive Ideal Real Comparative Analysis
4.2.6. Utility-Based Methods
Weighted Aggregates Sum Product ASsessment
COmplex PRoportional ASsessment
Combined Compromise Solution
4.2.7. Other Methods
Additive Ratio ASsessment
Multi-Objective Optimization on the Basis of Ratio Analysis
Risk Priority Number
5. Results and Discussion
5.1. Analysis of MADM Methods Integrated with Uncertainty Modeling Approaches
5.2. Approaches Used for Uncertainty Modeling
5.3. Application Domains of the Analyzed Approaches
5.4. Analysis of Authors and Publications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AHP | Analytic Hierarchy Process |
| ARAS | Additive Ratio Assessment |
| BS | Belief Structure |
| BWM | The Best Worst Method |
| CNIS | Cloud Negative Ideal Solution |
| CoCoSo | Combined Compromise Solution |
| COPRAS | COmplex PRoportional ASsessment |
| CPIS | Cloud Positive Ideal Solution |
| CRITIC | Criteria Importance Through Inter-criteria Correlation |
| D | Detection |
| DEMATEL | Decision-Making and Trial Evaluation Laboratory |
| DMs | Decision Makers |
| ETA | Event Tree Analysis |
| FBS | Fuzzy Belief Structure |
| FEMA | Failure Mode and Effect Analysis |
| FFNs | Fermatean Fuzzy Sets |
| FFSs | Fermatean Fuzzy Sets |
| FMEA | Failure Mode and Effect Analysis |
| FNIS | Fuzzy Negative Ideal Solution |
| FPIS | Fuzzy Positive Ideal Solution |
| FRPN | Fuzzy Risk Priority Number |
| FTA | Fault Tree Analysis |
| IFNIS | NIS with IVFNs |
| IFNs | Intuitionistic Fuzzy Numbers |
| IFPIS | PIS with IVFNs |
| IT2FNIS | Fuzzy Negative Ideal Solution with IT2FNs |
| IT2FNs | Interval Type-2 Fuzzy Numbers |
| IT2FPIS | Fuzzy Positive Ideal Solution with IT2FNs |
| IT2IFNs | Interval Type-2 Intuitionistic Fuzzy Numbers |
| IT2TFNs | Interval Type-2 Triangular Fuzzy Numbers |
| IT2TrFNs | Interval Type-2 Trapezoidal Fuzzy Numbers |
| ITLV | Interval 2-Tuple Linguistic Variable |
| ITLVs | 2-Tuple Linguistic Variables |
| IVFNs | Interval-Valued Fuzzy Numbers |
| IVNSs | Interval-Valued Neutrosophic Sets |
| IVq-ROFSs | Interval-Valued q-Rung Orthopair Fuzzy Sets |
| IVSFNIS | Fuzzy Negative Ideal Solution with SFSs |
| IVSFPIS | Fuzzy Positive Ideal Solution with SFSs |
| MABAC | Multi-Attributive Border Approximation Area Comparison |
| MADM | Multi-Attribute Decision-Making |
| MAIRCA | Multi-Attributive Ideal Real Comparative Analysis |
| MARCOS | Measurement of Alternatives and Ranking according to COmpromise Solution |
| MOORA | Multi-Objective Optimization on the basis of Ratio Analysis |
| MULTIMOORA | Multi-Objective Optimization on the basis of Ratio Analysis and the full MULTIplicative form |
| NFSs | Neutrosophic Sets |
| NIBS | Negative Ideal Solution with FBS |
| NSs | Neutrosophic Sets |
| O | Occurrence |
| ORESTE | Organization, Ranking, and Synthesis of Relational Data |
| PFNIS | Negative Ideal Solution with PFNs |
| PFNs | Pythagorean Fuzzy Numbers |
| PFSs | Pythagorean Fuzzy Sets |
| PFPIS | Positive Ideal Solution with PFNs |
| PHFSs | Probabilistic Hesitant Fuzzy Sets |
| PIBS | Positive Ideal Solution with FBS |
| PIS | Positive Ideal Solution |
| PIV-HFSs | Probabilistic Interval-Valued Hesitant Fuzzy Sets |
| PLTS | Probabilistic Linguistic Term Set |
| PROMETHEE | Preference Ranking Organization METHod for Enrichment of Evaluations |
| q-ROFSs | q-Rung Orthopair Fuzzy Sets |
| RCA | Root Cause Analysis |
| RFs | Risk Factors |
| RNNIS | Fuzzy Negative Ideal Solution with SVNSs |
| RNPIS | Fuzzy Positive Ideal Solution with SVNSs |
| RPN | Risk Priority Number |
| S | Severity |
| SFNs | Spherical Fuzzy Numbers |
| SFSs | Spherical Fuzzy Sets |
| SVNSs | Single-Valued Neutrosophic Sets |
| SWARA | Step-Wise Weight Assessment Ratio Analysis |
| TFNs | Triangular Fuzzy Numbers |
| TODIM | Interactive and Multi-criteria Decision-Making Method |
| TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
| TrFNs | Trapezoidal Fuzzy Numbers |
| VIKOR | Multi-Criteria Optimization and Compromise Solution |
| WASPAS | Weighted Aggregates Sum Product Assessment |
References
- Yazdi, M.; Mohammadpour, J.; Li, H.; Huang, H.; Zarei, E.; Pirbalouti, R.G.; Adumene, S. Fault Tree Analysis Improvements: A Bibliometric Analysis and Literature Review. Qual. Reliab. Eng. Int. 2023, 39, 1639–1659. [Google Scholar] [CrossRef]
- Mokhtarzadeh, M.; Rodríguez-Echeverría, J.; Semanjski, I.; Gautama, S. Hybrid Intelligence Failure Analysis for Industry 4.0: A Literature Review and Future Prospective. J. Intell. Manuf. 2025, 36, 2309–2334. [Google Scholar] [CrossRef]
- Stamatis, D.H. Failure Mode and Effect Analysis; Quality Press: Welshpool, WA, USA, 2003; ISBN 0-87389-598-3. [Google Scholar]
- IATF 16949:2016; Quality Management System Requirements for Automotive Production and Relevant Service Parts Organizations, 1st Edition. International Automotive Task Force: Berlin, Germany, 2017.
- Komatina, N.; Marinković, D. Optimization of PFMEA Team Composition in the Automotive Industry Using the IPF-RADAR Approach. Algorithms 2025, 18, 342. [Google Scholar] [CrossRef]
- Liu, H.-C.; Chen, X.-Q.; Duan, C.-Y.; Wang, Y.-M. Failure Mode and Effect Analysis Using Multi-Criteria Decision Making Methods: A Systematic Literature Review. Comput. Ind. Eng. 2019, 135, 881–897. [Google Scholar] [CrossRef]
- Liu, H.-C.; Liu, L.; Bian, Q.-H.; Lin, Q.-L.; Dong, N.; Xu, P.-C. Failure Mode and Effects Analysis Using Fuzzy Evidential Reasoning Approach and Grey Theory. Expert Syst. Appl. 2011, 38, 4403–4415. [Google Scholar] [CrossRef]
- Huang, J.; You, J.-X.; Liu, H.-C.; Song, M.-S. Failure Mode and Effect Analysis Improvement: A Systematic Literature Review and Future Research Agenda. Reliab. Eng. Syst. Saf. 2020, 199, 106885. [Google Scholar] [CrossRef]
- Liu, H.-C.; Liu, L.; Liu, N. Risk Evaluation Approaches in Failure Mode and Effects Analysis: A Literature Review. Expert Syst. Appl. 2013, 40, 828–838. [Google Scholar] [CrossRef]
- Liu, H.C. FMEA Using Uncertainty Theories and MCDM Methods. In FMEA Using Uncertainty Theories and MCDM Methods; Springer: Singapore, 2016; pp. 13–27. ISBN 978-981-10-1465-9. [Google Scholar]
- Dubois, D.; Prade, H. An Introduction to Fuzzy Systems. Clin. Chim. Acta 1998, 270, 3–29. [Google Scholar] [CrossRef]
- Zimmermann, H.-J. Fuzzy Set Theory. WIREs Comput. Stat. 2010, 2, 317–332. [Google Scholar] [CrossRef]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-51369-0. [Google Scholar]
- Atanassov, K.T. Intuitionistic Fuzzy Sets. In Intuitionistic Fuzzy Sets; Studies in Fuzziness and Soft Computing; Physica-Verlag HD: Heidelberg, Germany, 1999; Volume 35, pp. 1–137. ISBN 978-3-7908-2463-6. [Google Scholar]
- Peng, X.; Yang, Y. Fundamental Properties of Interval-Valued Pythagorean Fuzzy Aggregation Operators: Interval-Valued Pythagorean Fuzzy Aggregation Operations. Int. J. Intell. Syst. 2016, 31, 444–487. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical Fuzzy Sets and Spherical Fuzzy TOPSIS Method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R.R. Fermatean Fuzzy Sets. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 663–674. [Google Scholar] [CrossRef]
- Zadeh, L.A. A Note on Z-Numbers. Inf. Sci. 2011, 181, 2923–2932. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough Sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Netto, T.A.; Honorato, H.J.; Qassim, R.Y. Prioritization of Failure Risk in Subsea Flexible Pipes via Data Envelopment Analysis. Mar. Struct. 2013, 34, 105–116. [Google Scholar] [CrossRef]
- Jian-Bo Yang; Pratyush Sen A General Multi-Level Evaluation Process for Hybrid MADM with Uncertainty. IEEE Trans. Syst. Man Cybern. 1994, 24, 1458–1473. [CrossRef]
- Yang, J.-B.; Singh, M.G. An Evidential Reasoning Approach for Multiple-Attribute Decision Making with Uncertainty. IEEE Trans. Syst. Man Cybern. 1994, 24, 1–18. [Google Scholar] [CrossRef]
- Lo, H.-W.; Liou, J.J.H.; Huang, C.-N.; Chuang, Y.-C. A Novel Failure Mode and Effect Analysis Model for Machine Tool Risk Analysis. Reliab. Eng. Syst. Saf. 2019, 183, 173–183. [Google Scholar] [CrossRef]
- Gul, M.; Lo, H.-W.; Yucesan, M. Fermatean Fuzzy TOPSIS-Based Approach for Occupational Risk Assessment in Manufacturing. Complex Intell. Syst. 2021, 7, 2635–2653. [Google Scholar] [CrossRef]
- Pamučar, D.; Petrović, I.; Ćirović, G. Modification of the Best–Worst and MABAC Methods: A Novel Approach Based on Interval-Valued Fuzzy-Rough Numbers. Expert Syst. Appl. 2018, 91, 89–106. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Hu, J.; Qi, J.; Gu, C.-C.; Peng, Y.-H. An Integrated AHP and VIKOR for Design Concept Evaluation Based on Rough Number. Adv. Eng. Inform. 2015, 29, 408–418. [Google Scholar] [CrossRef]
- AIAG&VDA. Failure Mode and Effects Analysis—FMEA Handbook: Design FMEA, Process FMEA, Supplemental FMEA for Monitoring & System Response; Automotive Industry Action Group: Southfield, MI, USA, 2019. [Google Scholar]
- Aleksić, A.; Tadić, D. Industrial and Management Applications of Type-2 Multi-Attribute Decision-Making Techniques Extended with Type-2 Fuzzy Sets from 2013 to 2022. Mathematics 2023, 11, 2249. [Google Scholar] [CrossRef]
- Zayat, W.; Kilic, H.S.; Yalcin, A.S.; Zaim, S.; Delen, D. Application of MADM Methods in Industry 4.0: A Literature Review. Comput. Ind. Eng. 2023, 177, 109075. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy Multiple Criteria Decision-Making Techniques and Applications—Two Decades Review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Zare, M.; Pahl, C.; Rahnama, H.; Nilashi, M.; Mardani, A.; Ibrahim, O.; Ahmadi, H. Multi-Criteria Decision Making Approach in E-Learning: A Systematic Review and Classification. Appl. Soft Comput. 2016, 45, 108–128. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Wang, T. Multi-criteria Group Decision-making Method Based on TODIM with Probabilistic Interval-valued Hesitant Fuzzy Information. Expert Syst. 2019, 36, e12424. [Google Scholar] [CrossRef]
- Liu, H.-C.; Wang, L.-E.; Li, Z.; Hu, Y.-P. Improving Risk Evaluation in FMEA With Cloud Model and Hierarchical TOPSIS Method. IEEE Trans. Fuzzy Syst. 2019, 27, 84–95. [Google Scholar] [CrossRef]
- Aydin, N.; Seker, S.; Şen, C. A New Risk Assessment Framework for Safety in Oil and Gas Industry: Application of FMEA and BWM Based Picture Fuzzy MABAC. J. Pet. Sci. Eng. 2022, 219, 111059. [Google Scholar] [CrossRef]
- Chang, T.-W.; Lo, H.-W.; Chen, K.-Y.; Liou, J. A Novel FMEA Model Based on Rough BWM and Rough TOPSIS-AL for Risk Assessment. Mathematics 2019, 7, 874. [Google Scholar] [CrossRef]
- Jin, C.; Ran, Y.; Zhang, G. Interval-Valued q-Rung Orthopair Fuzzy FMEA Application to Improve Risk Evaluation Process of Tool Changing Manipulator. Appl. Soft Comput. 2021, 104, 107192. [Google Scholar] [CrossRef]
- Jianxing, Y.; Shibo, W.; Haicheng, C.; Yang, Y.; Haizhao, F.; Jiahao, L. Risk Assessment of Submarine Pipelines Using Modified FMEA Approach Based on Cloud Model and Extended VIKOR Method. Process Saf. Environ. Prot. 2021, 155, 555–574. [Google Scholar] [CrossRef]
- Rahnamay Bonab, S.; Osgooei, E. Environment Risk Assessment of Wastewater Treatment Using FMEA Method Based on Pythagorean Fuzzy Multiple-Criteria Decision-Making. Environ. Dev. Sustain. 2022; online first. [Google Scholar] [CrossRef]
- Adalı, E.A.; Tuş, A. ARAS Method Based on Z-numbers in FMEA. Qual. Reliab. Eng. Int. 2023, 39, 3059–3081. [Google Scholar] [CrossRef]
- Ghoushchi, S.J.; Gharibi, K.; Osgooei, E.; Ab Rahman, M.N.; Khazaeili, M. Risk Prioritization in Failure Mode and Effects Analysis with Extended SWARA and MOORA Methods Based on Z-Numbers Theory. Informatica 2021, 32, 41–67. [Google Scholar] [CrossRef]
- Ghoushchi, S.J.; Jalalat, S.M.; Bonab, S.R.; Ghiaci, A.M.; Haseli, G.; Tomaskova, H. Evaluation of Wind Turbine Failure Modes Using the Developed SWARA-CoCoSo Methods Based on the Spherical Fuzzy Environment. IEEE Access 2022, 10, 86750–86764. [Google Scholar] [CrossRef]
- Ghoushchi, N.G.; Ahmadzadeh, K.; Ghoushchi, S.J. A New Extended Approach to Reduce Admission Time in Hospital Operating Rooms Based on the FMEA Method in an Uncertain Environment. J. Soft Comput. Decis. Anal. 2023, 1, 80–101. [Google Scholar] [CrossRef]
- Zandi, P.; Rahmani, M.; Khanian, M.; Mosavi, A. Agricultural Risk Management Using Fuzzy TOPSIS Analytical Hierarchy Process (AHP) and Failure Mode and Effects Analysis (FMEA). Agriculture 2020, 10, 504. [Google Scholar] [CrossRef]
- Nabizadeh, M.; Khalilzadeh, M.; Ebrahimnejad, S.; Ershadi, M.J. Developing a Fuzzy Goal Programming Model for Health, Safety and Environment Risks Based on Hybrid Fuzzy FMEA-VIKOR Method. J. Eng. Des. Technol. 2021, 19, 317–338. [Google Scholar] [CrossRef]
- Sumrit, D.; Keeratibhubordee, J. Risk Assessment Framework for Reverse Logistics in Waste Plastic Recycle Industry: A Hybrid Approach Incorporating FMEA Decision Model with AHP-LOPCOW- ARAS Under Trapezoidal Fuzzy Set. Decis. Mak. Appl. Manag. Eng. 2025, 8, 42–81. [Google Scholar] [CrossRef]
- Boral, S.; Chaturvedi, S.K.; Howard, I.; Naikan, V.N.A.; McKee, K. An Integrated Interval Type-2 Fuzzy Sets and Multiplicative Half Quadratic Programming-Based MCDM Framework for Calculating Aggregated Risk Ranking Results of Failure Modes in FMECA. Process Saf. Environ. Prot. 2021, 150, 194–222. [Google Scholar] [CrossRef]
- Komatina, N.; Tadić, D.; Aleksić, A.; Banduka, N. The Integrated PFMEA Approach with Interval Type-2 Fuzzy Sets and FBWM: A Case Study in the Automotive Industry. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 1201–1212. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Distances between Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 2000, 114, 505–518. [Google Scholar] [CrossRef]
- Liu, B. Credibility Theory. In Uncertainty Theory; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2007; Volume 154, pp. 81–156. ISBN 978-3-540-73164-1. [Google Scholar]
- Zadeh, L.A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Lootsma, F.A. Stochastic and Fuzzy Pert. In Fuzzy Logic for Planning and Decision Making; Applied Optimization; Springer: Boston, MA, USA, 1997; Volume 8, pp. 39–65. ISBN 978-1-4419-4779-6. [Google Scholar]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1995; ISBN 978-0-13-101171-7. [Google Scholar]
- Melin, P.; Castillo, O. A Review on the Applications of Type-2 Fuzzy Logic in Classification and Pattern Recognition. Expert Syst. Appl. 2013, 40, 5413–5423. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Elements of Intuitionistic Fuzzy Logic. Part I. Fuzzy Sets Syst. 1998, 95, 39–52. [Google Scholar] [CrossRef]
- Ye, J. Two Effective Measures of Intuitionistic Fuzzy Entropy. Computing 2010, 87, 55–62. [Google Scholar] [CrossRef]
- Wang, Z.-L.; You, J.-X.; Liu, H.-C.; Wu, S.-M. Failure Mode and Effect Analysis Using Soft Set Theory and COPRAS Method. Int. J. Comput. Intell. Syst. 2017, 10, 1002. [Google Scholar] [CrossRef]
- Wei, G.; Lu, M. Pythagorean Fuzzy Power Aggregation Operators in Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018, 33, 169–186. [Google Scholar] [CrossRef]
- Ilbahar, E.; Karaşan, A.; Cebi, S.; Kahraman, C. A Novel Approach to Risk Assessment for Occupational Health and Safety Using Pythagorean Fuzzy AHP & Fuzzy Inference System. Saf. Sci. 2018, 103, 124–136. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2017, 25, 1222–1230. [Google Scholar] [CrossRef]
- Joshi, B.P.; Singh, A.; Bhatt, P.K.; Vaisla, K.S. Interval Valued q -Rung Orthopair Fuzzy Sets and Their Properties. J. Intell. Fuzzy Syst. 2018, 35, 5225–5230. [Google Scholar] [CrossRef]
- Ayvaz, B.; Tatar, V.; Sağır, Z.; Pamucar, D. An Integrated Fine-Kinney Risk Assessment Model Utilizing Fermatean Fuzzy AHP-WASPAS for Occupational Hazards in the Aquaculture Sector. Process Saf. Environ. Prot. 2024, 186, 232–251. [Google Scholar] [CrossRef]
- Ghoushchi, S.J.; Yousefi, S.; Khazaeili, M. An Extended FMEA Approach Based on the Z-MOORA and Fuzzy BWM for Prioritization of Failures. Appl. Soft Comput. 2019, 81, 105505. [Google Scholar] [CrossRef]
- Jafarzadeh Ghoushchi, S.; Memarpour Ghiaci, A.; Rahnamay Bonab, S.; Ranjbarzadeh, R. Barriers to Circular Economy Implementation in Designing of Sustainable Medical Waste Management Systems Using a New Extended Decision-Making and FMEA Models. Environ. Sci. Pollut. Res. 2022, 29, 79735–79753. [Google Scholar] [CrossRef] [PubMed]
- Cường, B.C. Picture Fuzzy Sets. J. Comput. Sci. Cybern. 2015, 30, 409. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft Set Theory—First Results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Yang, J.B.; Wang, Y.M.; Xu, D.L.; Chin, K.S. The Evidential Reasoning Approach for MADA under Both Probabilistic and Fuzzy Uncertainties. Eur. J. Oper. Res. 2006, 171, 309–343. [Google Scholar] [CrossRef]
- Hajiagha, S.H.R.; Hashemi, S.S.; Mohammadi, Y.; Zavadskas, K. Fuzzy Belief Structure-Based VIKOR Method: An Application for Ranking Delay Causes of Tehran Metro System by FMEA Criteria. Transport 2016, 31, 108–118. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z. Group Consistency and Group Decision Making under Uncertain Probabilistic Hesitant Fuzzy Preference Environment. Inf. Sci. 2017, 414, 276–288. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, J.; Wu, Q.; Pamučar, D.; Wang, W.; Zhou, L. Risk Priority Evaluation of Power Transformer Parts Based on Hybrid FMEA Framework under Hesitant Fuzzy Environment. Facta Univ. Ser. Mech. Eng. 2022, 20, 399. [Google Scholar] [CrossRef]
- Shyng, J.-Y.; Wang, F.-K.; Tzeng, G.-H.; Wu, K.-S. Rough Set Theory in Analyzing the Attributes of Combination Values for the Insurance Market. Expert Syst. Appl. 2007, 32, 56–64. [Google Scholar] [CrossRef]
- Zhai, L.-Y.; Khoo, L.-P.; Zhong, Z.-W. A Rough Set Enhanced Fuzzy Approach to Quality Function Deployment. Int. J. Adv. Manuf. Technol. 2008, 37, 613–624. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Ma, J.; Hu, J. A Fuzzy Rough Number Extended AHP and VIKOR for Failure Mode and Effects Analysis under Uncertainty. Adv. Eng. Inform. 2022, 51, 101454. [Google Scholar] [CrossRef]
- Liu, H.-C.; Li, Z.; Song, W.; Su, Q. Failure Mode and Effect Analysis Using Cloud Model Theory and PROMETHEE Method. IEEE Trans. Reliab. 2017, 66, 1058–1072. [Google Scholar] [CrossRef]
- Pang, Q.; Wang, H.; Xu, Z. Probabilistic Linguistic Term Sets in Multi-Attribute Group Decision Making. Inf. Sci. 2016, 369, 128–143. [Google Scholar] [CrossRef]
- Li, G.-F.; Li, Y.; Chen, C.-H.; He, J.-L.; Hou, T.-W.; Chen, J.-H. Advanced FMEA Method Based on Interval 2-Tuple Linguistic Variables and TOPSIS. Qual. Eng. 2020, 32, 653–662. [Google Scholar] [CrossRef]
- Wang, J.; Wu, J.; Wang, J.; Zhang, H.; Chen, X. Interval-Valued Hesitant Fuzzy Linguistic Sets and Their Applications in Multi-Criteria Decision-Making Problems. Inf. Sci. 2014, 288, 55–72. [Google Scholar] [CrossRef]
- Wu, X.; Liao, H. A Consensus-Based Probabilistic Linguistic Gained and Lost Dominance Score Method. Eur. J. Oper. Res. 2019, 272, 1017–1027. [Google Scholar] [CrossRef]
- Xing, Y.-J.; Xing, C. Model for Evaluating the Virtual Enterprise’s Risk with 2-Tuple Linguistic Information. J. Intell. Fuzzy Syst. 2016, 31, 193–200. [Google Scholar] [CrossRef]
- Zhang, H. The Multiattribute Group Decision Making Method Based on Aggregation Operators with Interval-Valued 2-Tuple Linguistic Information. Math. Comput. Model. 2012, 56, 27–35. [Google Scholar] [CrossRef]
- Liu, H.-C.; Liu, L.; Wu, J. Material Selection Using an Interval 2-Tuple Linguistic VIKOR Method Considering Subjective and Objective Weights. Mater. Des. 2013, 52, 158–167. [Google Scholar] [CrossRef]
- Yalcin, A.S.; Kilic, H.S.; Delen, D. The Use of Multi-Criteria Decision-Making Methods in Business Analytics: A Comprehensive Literature Review. Technol. Forecast. Soc. Change 2022, 174, 121193. [Google Scholar] [CrossRef]
- Saaty, T.L. The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach. Oper. Res. 2013, 61, 1101–1118. [Google Scholar] [CrossRef]
- Chang, D.-Y. Applications of the Extent Analysis Method on Fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Sakthivel, G.; Saravanakumar, D.; Muthuramalingam, T. Application of Failure Mode and Effect Analysis in Manufacturing Industry—An Integrated Approach with FAHP-Fuzzy TOPSIS and FAHP-Fuzzy VIKOR. Int. J. Product. Qual. Manag. 2018, 24, 398. [Google Scholar] [CrossRef]
- Hassan, A.; Purnomo, M.R.A.; Anugerah, A.R. Fuzzy-Analytical-Hierarchy Process in Failure Mode and Effect Analysis (FMEA) to Identify Process Failure in the Warehouse of a Cement Industry. J. Eng. Des. Technol. 2019, 18, 378–388. [Google Scholar] [CrossRef]
- Ðurić, G.; Mitrović, Č.; Komatina, N.; Tadić, D.; Vorotović, G. The Hybrid MCDM Model with the Interval Type-2 Fuzzy Sets for the Software Failure Analysis. J. Intell. Fuzzy Syst. 2019, 37, 7747–7759. [Google Scholar] [CrossRef]
- Banduka, N.; Aleksić, A.; Komatina, N.; Aljinović, A.; Tadić, D. The Prioritization of Failures within the Automotive Industry: The Two-Step Failure Mode and Effect Analysis Integrated Approach. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2020, 234, 1559–1570. [Google Scholar] [CrossRef]
- Komatina, N.; Tadić, D.; Đurić, G.; Aleksić, A. Determination of Manufacturing Process Failures Priority under Type 2 Fuzzy Environment: Application of Genetic Algorithm and Variable Neighborhood Search. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 238, 2427–2437. [Google Scholar] [CrossRef]
- Mete, S. Assessing Occupational Risks in Pipeline Construction Using FMEA-Based AHP-MOORA Integrated Approach under Pythagorean Fuzzy Environment. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1645–1660. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, X.; Wang, W. An Extended Interval Type-2 Fuzzy ORESTE Method for Risk Analysis in FMEA. Int. J. Fuzzy Syst. 2021, 23, 1379–1395. [Google Scholar] [CrossRef]
- Aleksic, A.; Runic Ristic, M.; Komatina, N.; Tadic, D. Advanced Risk Assessment in Reverse Supply Chain Processes: A Case Study in Republic of Serbia. Adv. Prod. Eng. Manag. 2019, 14, 421–434. [Google Scholar] [CrossRef]
- Rezaei, J. Best-Worst Multi-Criteria Decision-Making Method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable Supplier Selection: A Novel Integrated Fuzzy Best Worst Method (F-BWM) and Fuzzy CoCoSo with Bonferroni (CoCoSo’B) Multi-Criteria Model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.; Zhang, H. An Integrated Approach for Failure Mode and Effects Analysis Based on Fuzzy Best-Worst, Relative Entropy, and VIKOR Methods. Appl. Soft Comput. 2018, 72, 636–646. [Google Scholar] [CrossRef]
- Aleksić, A.; Milanović, D.D.; Komatina, N.; Tadić, D. Evaluation and Ranking of Failures in Manufacturing Process by Combining Best-worst Method and VIKOR under Type-2 Fuzzy Environment. Expert Syst. 2023, 40, e13148. [Google Scholar] [CrossRef]
- Song, M.; Jiang, W.; Xie, C.; Zhou, D. A New Interval Numbers Power Average Operator in Multiple Attribute Decision Making: New Interval Numbers Power Average Operator in MADM. Int. J. Intell. Syst. 2017, 32, 631–644. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, L.; Chen, Y.; Chen, H. An Integrated Approach to Green Supplier Selection Based on the Interval Type-2 Fuzzy Best-Worst and Extended VIKOR Methods. Inf. Sci. 2019, 502, 394–417. [Google Scholar] [CrossRef]
- Gölcük, İ. Interval Type-2 Fuzzy Inference-Based Failure Mode and Effect Analysis Model in a Group Decision-Making Setting. Kybernetes 2022, 51, 2603–2635. [Google Scholar] [CrossRef]
- Karimi, H.; Sadeghi-Dastaki, M.; Javan, M. A Fully Fuzzy Best–Worst Multi Attribute Decision Making Method with Triangular Fuzzy Number: A Case Study of Maintenance Assessment in the Hospitals. Appl. Soft Comput. 2020, 86, 105882. [Google Scholar] [CrossRef]
- Eftekharzadeh, S.S.; Ghoushchi, S.J.; Momayezi, F. Enhancing Safety and Risk Management through an Integrated Spherical Fuzzy Approach for Managing Laboratory Errors. Decis. Sci. Lett. 2024, 13, 545–564. [Google Scholar] [CrossRef]
- He, S.; Wang, Y.; Peng, J.; Wang, J. Risk Ranking of Wind Turbine Systems through an Improved FMEA Based on Probabilistic Linguistic Information and the TODIM Method. J. Oper. Res. Soc. 2022, 73, 467–480. [Google Scholar] [CrossRef]
- Falatoonitoosi, E.; Leman, Z.; Sorooshian, S.; Salimi, M. Decision-Making Trial and Evaluation Laboratory. Res. J. Appl. Sci. Eng. Technol. 2013, 5, 3476–3480. [Google Scholar] [CrossRef]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of Rational Dispute Resolution Method by Applying New Step-wise Weight Assessment Ratio Analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Mavi, R.K. Green Supplier Selection: A Fuzzy AHP and Fuzzy ARAS Approach. Int. J. Serv. Oper. Manag. 2015, 22, 165. [Google Scholar] [CrossRef]
- Yager, R.R.; Abbasov, A.M. Pythagorean Membership Grades, Complex Numbers, and Decision Making: Pythagorean Membership Grades and Fuzzy Subsets. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Sharaf, I.M. Global Supplier Selection with Spherical Fuzzy Analytic Hierarchy Process. In Decision Making with Spherical Fuzzy Sets; Kahraman, C., Kutlu Gündoğdu, F., Eds.; Studies in Fuzziness and Soft Computing; Springer International Publishing: Cham, Switzerland, 2021; Volume 392, pp. 323–348. ISBN 978-3-030-45460-9. [Google Scholar]
- Feutrill, A.; Roughan, M. A Review of Shannon and Differential Entropy Rate Estimation. Entropy 2021, 23, 1046. [Google Scholar] [CrossRef]
- Eskov, V.M.; Eskov, V.V.; Vochmina, Y.V.; Gorbunov, D.V.; Ilyashenko, L.K. Shannon Entropy in the Research on Stationary Regimes and the Evolution of Complexity. Mosc. Univ. Phys. Bull. 2017, 72, 309–317. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, Y.; Wang, W.; Liu, X.; Jia, L. An Extended FMEA Model Based on Cumulative Prospect Theory and Type-2 Intuitionistic Fuzzy VIKOR for the Railway Train Risk Prioritization. Entropy 2020, 22, 1418. [Google Scholar] [CrossRef]
- Shakibaei, H.; Seifi, S.; Zhuang, J. A Data-driven and Cost-oriented FMEA–MCDM Approach to Risk Assessment and Ranking in a Fuzzy Environment: A Hydraulic Pump Factory Case Study. Risk Anal. 2024, 44, 2629–2648. [Google Scholar] [CrossRef]
- Fan, J.; Li, D.; Wu, M. An Extended TODIM Method with Unknown Weight Information Under Interval-Valued Neutrosophic Environment for FMEA. Int. J. Comput. Intell. Syst. 2020, 14, 174. [Google Scholar] [CrossRef]
- Liu, H.-C.; You, J.-X.; You, X.-Y.; Shan, M.-M. A Novel Approach for Failure Mode and Effects Analysis Using Combination Weighting and Fuzzy VIKOR Method. Appl. Soft Comput. 2015, 28, 579–588. [Google Scholar] [CrossRef]
- Li, H.; Ji, L.; Li, F.; Li, H.; Sun, Q.; Li, Z.; Yan, H.; Guan, W.; Wang, L.; Ma, Y. Operational Safety Risk Assessment for the Water Channels of the South-to-North Water Diversion Project Based on TODIM-FMEA. Complexity 2020, 2020, 6691764. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, J. Approach to Group Decision Making Based on Interval-Valued Intuitionistic Judgment Matrices. Syst. Eng. Theory Pract. 2007, 27, 126–133. [Google Scholar] [CrossRef]
- Zhou, L.-P.; Dong, J.-Y.; Wan, S.-P. Two New Approaches for Multi-Attribute Group Decision-Making With Interval-Valued Neutrosophic Frank Aggregation Operators and Incomplete Weights. IEEE Access 2019, 7, 102727–102750. [Google Scholar] [CrossRef]
- Başhan, V.; Demirel, H.; Gul, M. An FMEA-Based TOPSIS Approach under Single Valued Neutrosophic Sets for Maritime Risk Evaluation: The Case of Ship Navigation Safety. Soft Comput. 2020, 24, 18749–18764. [Google Scholar] [CrossRef]
- Vahdani, B.; Salimi, M.; Charkhchian, M. A New FMEA Method by Integrating Fuzzy Belief Structure and TOPSIS to Improve Risk Evaluation Process. Int. J. Adv. Manuf. Technol. 2015, 77, 357–368. [Google Scholar] [CrossRef]
- Sabripoor, A.; Ghousi, R.; Najafi, M.; Barzinpour, F.; Makuei, A. Risk Assessment of Organ Transplant Operation: A Fuzzy Hybrid MCDM Approach Based on Fuzzy FMEA. PLoS ONE 2024, 19, e0299655. [Google Scholar] [CrossRef]
- Khodadadi-Karimvand, M.; Shirouyehzad, H. Well Drilling Fuzzy Risk Assessment Using Fuzzy FMEA and Fuzzy TOPSIS. J. Fuzzy Ext. Appl. 2021, 2, 144–155. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, L. Risk Analysis of Human Error in Interaction Design by Using a Hybrid Approach Based on FMEA, SHERPA, and Fuzzy TOPSIS. Qual. Reliab. Eng. Int. 2020, 36, 1657–1677. [Google Scholar] [CrossRef]
- Liu, H.-C.; You, J.-X.; Lin, Q.-L.; Li, H. Risk Assessment in System FMEA Combining Fuzzy Weighted Average with Fuzzy Decision-Making Trial and Evaluation Laboratory. Int. J. Comput. Integr. Manuf. 2015, 28, 701–714. [Google Scholar] [CrossRef]
- Safari, H.; Faraji, Z.; Majidian, S. Identifying and Evaluating Enterprise Architecture Risks Using FMEA and Fuzzy VIKOR. J. Intell. Manuf. 2016, 27, 475–486. [Google Scholar] [CrossRef]
- Sudžum, R.; Nestić, S.; Komatina, N.; Kraišnik, M. An Intuitionistic Fuzzy Multi-Criteria Approach for Prioritizing Failures That Cause Overproduction: A Case Study in Process Manufacturing. Axioms 2024, 13, 357. [Google Scholar] [CrossRef]
- Gul, M.; Ak, M.F. A Modified Failure Modes and Effects Analysis Using Interval-Valued Spherical Fuzzy Extension of TOPSIS Method: Case Study in a Marble Manufacturing Facility. Soft Comput. 2021, 25, 6157–6178. [Google Scholar] [CrossRef]
- Wei, G.; Gao, H.; Wei, Y. Some Q-Rung Orthopair Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making. Int. J. Intell. Syst. 2018, 33, 1426–1458. [Google Scholar] [CrossRef]
- Ershadi, M.J.; Forouzandeh, M. Information Security Risk Management of Research Information Systems: A Hybrid Approach of Fuzzy FMEA, AHP, TOPSIS and Shannon Entropy. J. Digit. Inf. Manag. 2019, 17, 321. [Google Scholar]
- Mangeli, M.; Shahraki, A.; Saljooghi, F.H. Improvement of Risk Assessment in the FMEA Using Nonlinear Model, Revised Fuzzy TOPSIS, and Support Vector Machine. Int. J. Ind. Ergon. 2019, 69, 209–216. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.; He, J.; Wang, L.; Zhou, X. Improved FMEA Based on IVF and Fuzzy VIKOR Method: A Case Study of Workpiece Box System of CNC Gear Milling Machine. Qual. Reliab. Eng. Int. 2021, 37, 2478–2498. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ran, Y.; Zhang, G. A Hybrid Multilevel FTA-FMEA Method for a Flexible Manufacturing Cell Based on Meta-Action and TOPSIS. IEEE Access 2019, 7, 110306–110315. [Google Scholar] [CrossRef]
- Zhu, J.; Shuai, B.; Li, G.; Chin, K.-S.; Wang, R. Failure Mode and Effect Analysis Using Regret Theory and PROMETHEE under Linguistic Neutrosophic Context. J. Loss Prev. Process Ind. 2020, 64, 104048. [Google Scholar] [CrossRef]
- Kushwaha, D.K.; Panchal, D.; Sachdeva, A. Performance Evaluation of Bagasse-Based Cogeneration Power Generation Plant Utilizing IFLT, IF-FMEA and IF-TOPSIS Approaches. Int. J. Qual. Reliab. Manag. 2024, 41, 698–731. [Google Scholar] [CrossRef]
- Akram, M.; Luqman, A.; Alcantud, J.C.R. Risk Evaluation in Failure Modes and Effects Analysis: Hybrid TOPSIS and ELECTRE I Solutions with Pythagorean Fuzzy Information. Neural Comput. Appl. 2021, 33, 5675–5703. [Google Scholar] [CrossRef]
- Li, H.; Lv, L.; Li, F.; Wang, L.; Xia, Q. A Novel Approach to Emergency Risk Assessment Using FMEA with Extended MULTIMOORA Method under Interval-Valued Pythagorean Fuzzy Environment. Int. J. Intell. Comput. Cybern. 2020, 13, 41–65. [Google Scholar] [CrossRef]
- Lv, L.; Li, H.; Wang, L.; Xia, Q.; Ji, L. Failure Mode and Effect Analysis (FMEA) with Extended MULTIMOORA Method Based on Interval-Valued Intuitionistic Fuzzy Set: Application in Operational Risk Evaluation for Infrastructure. Information 2019, 10, 313. [Google Scholar] [CrossRef]
- Lian, X.; Hou, L.; Zhang, W.; Bu, X.; Yan, H. An Integrated Approach for Failure Mode and Effects Analysis Based on Weight of Risk Factors and Fuzzy PROMETHEE II. Symmetry 2022, 14, 1196. [Google Scholar] [CrossRef]
- Liu, S.; Guo, X.; Zhang, L. An Improved Assessment Method for FMEA for a Shipboard Integrated Electric Propulsion System Using Fuzzy Logic and DEMATEL Theory. Energies 2019, 12, 3162. [Google Scholar] [CrossRef]
- Liu, H.-C.; You, J.-X.; Shan, M.-M.; Shao, L.-N. Failure Mode and Effects Analysis Using Intuitionistic Fuzzy Hybrid TOPSIS Approach. Soft Comput. 2015, 19, 1085–1098. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y. Multiple Attribute Decision-Making Method Based on Single-Valued Neutrosophic Normalized Weighted Bonferroni Mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Li, H.; Guo, Y.; Li, F.; Cao, Y.; Wang, L.; Ma, Y. Assessment of Operation Safety Risk for South-to-North Water Diversion Project: A Fuzzy VIKOR-FMEA Approach. Water Supply 2022, 22, 3685–3701. [Google Scholar] [CrossRef]
- Selim, H.; Yunusoglu, M.G.; Yılmaz Balaman, Ş. A Dynamic Maintenance Planning Framework Based on Fuzzy TOPSIS and FMEA: Application in an International Food Company. Qual. Reliab. Eng. Int. 2016, 32, 795–804. [Google Scholar] [CrossRef]
- Kiani Aslani, R.; Feili, H.R.; Javanshir, H. A Hybrid of Fuzzy FMEA-AHP to Determine Factors Affecting Alternator Failure Causes. Manag. Sci. Lett. 2014, 4, 1981–1984. [Google Scholar] [CrossRef]
- Karatop, B.; Taşkan, B.; Adar, E.; Kubat, C. Decision Analysis Related to the Renewable Energy Investments in Turkey Based on a Fuzzy AHP-EDAS-Fuzzy FMEA Approach. Comput. Ind. Eng. 2021, 151, 106958. [Google Scholar] [CrossRef]
- Zheng, Q.; Liu, X.; Wang, W. A Likelihood-based ORESTE Method for Failure Mode and Effect Analysis (FMEA) Based Risk Analysis Problem under Interval Type-2 Fuzzy Environment. Qual. Reliab. Eng. Int. 2022, 38, 304–325. [Google Scholar] [CrossRef]
- Akyuz, E.; Celik, E. A Quantitative Risk Analysis by Using Interval Type-2 Fuzzy FMEA Approach: The Case of Oil Spill. Marit. Policy Manag. 2018, 45, 979–994. [Google Scholar] [CrossRef]
- Wang, L.-E.; Liu, H.-C.; Quan, M.-Y. Evaluating the Risk of Failure Modes with a Hybrid MCDM Model under Interval-Valued Intuitionistic Fuzzy Environments. Comput. Ind. Eng. 2016, 102, 175–185. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. Soft Computing Based on Maximizing Consensus and Fuzzy TOPSIS Approach to Interval-Valued Intuitionistic Fuzzy Group Decision Making. Appl. Soft Comput. 2015, 26, 42–56. [Google Scholar] [CrossRef]
- Sayyadi Tooranloo, H.; Ayatollah, A.S. A Model for Failure Mode and Effects Analysis Based on Intuitionistic Fuzzy Approach. Appl. Soft Comput. 2016, 49, 238–247. [Google Scholar] [CrossRef]
- Yener, Y.; Can, G.F. A FMEA Based Novel Intuitionistic Fuzzy Approach Proposal: Intuitionistic Fuzzy Advance MCDM and Mathematical Modeling Integration. Expert Syst. Appl. 2021, 183, 115413. [Google Scholar] [CrossRef]
- Komatina, N. A Compromise-Based MADM Approach for Prioritizing Failures: Integrating the RADAR Method within the FMEA Framework. J. Sist. Dan Manaj. Ind. 2024, 8, 73–88. [Google Scholar] [CrossRef]
- Kushwaha, D.K.; Panchal, D.; Sachdeva, A. A Modified FMEA Approach Based Integrated Decision Framework for Overcoming the Problems of Sudden Failure and Accidental Hazards in Turbine and Alternator Unit. Facta Univ. Ser. Mech. Eng. 2023; online first. Available online: https://casopisi.junis.ni.ac.rs/index.php/FUMechEng/article/view/11146 (accessed on 5 July 2025).
- Brans, J.P.; Vincke, P.; Mareschal, B. How to Select and How to Rank Projects: The Promethee Method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Autran Monteiro Gomes, L.F.; Duncan Rangel, L.A. An Application of the TODIM Method to the Multicriteria Rental Evaluation of Residential Properties. Eur. J. Oper. Res. 2009, 193, 204–211. [Google Scholar] [CrossRef]
- Qin, J.; Liu, X.; Pedrycz, W. An Extended TODIM Multi-Criteria Group Decision Making Method for Green Supplier Selection in Interval Type-2 Fuzzy Environment. Eur. J. Oper. Res. 2017, 258, 626–638. [Google Scholar] [CrossRef]
- Stević, Ž.; Pamučar, D.; Puška, A.; Chatterjee, P. Sustainable Supplier Selection in Healthcare Industries Using a New MCDM Method: Measurement of Alternatives and Ranking According to COmpromise Solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Kahraman, C.; Öztayşi, B.; Uçal Sarı, İ.; Turanoğlu, E. Fuzzy Analytic Hierarchy Process with Interval Type-2 Fuzzy Sets. Knowl. Based Syst. 2014, 59, 48–57. [Google Scholar] [CrossRef]
- Roubens, M. Preference Relations on Actions and Criteria in Multicriteria Decision Making. Eur. J. Oper. Res. 1982, 10, 51–55. [Google Scholar] [CrossRef]
- Chen, C.T. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Chen, M.-F.; Tzeng, G.-H. Combining Grey Relation and TOPSIS Concepts for Selecting an Expatriate Host Country. Math. Comput. Model. 2004, 40, 1473–1490. [Google Scholar] [CrossRef]
- Grzegorzewski, P. Distances between Intuitionistic Fuzzy Sets and/or Interval-Valued Fuzzy Sets Based on the Hausdorff Metric. Fuzzy Sets Syst. 2004, 148, 319–328. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Zhou, Y.; Hezam, I. Multi-Criteria Group Decision Making Based on Neutrosophic Analytic Hierarchy Process. J. Intell. Fuzzy Syst. 2017, 33, 4055–4066. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS Method for Multi-Attribute Group Decision-Making under Single-Valued Neutrosophic Environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Li, C.-B.; Qi, Z.-Q.; Feng, X. A Multi-Risks Group Evaluation Method for the Informatization Project under Linguistic Environment. J. Intell. Fuzzy Syst. 2014, 26, 1581–1592. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.; Chen, Y.; Yang, K. TOPSIS with Fuzzy Belief Structure for Group Belief Multiple Criteria Decision Making. Expert Syst. Appl. 2011, 38, 9400–9406. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Extended VIKOR Method in Comparison with Outranking Methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Chen, S.H.; Wang, C.C. Representation, Ranking, Distance, and Similarity of Fuzzy Numbers with Step Form Membership Function Using k-Preference Integration Method. In Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), Vancouver, BC, Canada, 25–28 July 2001; Volume 2, pp. 801–806. [Google Scholar]
- Chen, S.-M.; Lee, L.-W. Fuzzy Multiple Attributes Group Decision-Making Based on the Interval Type-2 TOPSIS Method. Expert Syst. Appl. 2010, 37, 2790–2798. [Google Scholar] [CrossRef]
- Shu, M.-H.; Cheng, C.-H.; Chang, J.-R. Using Intuitionistic Fuzzy Sets for Fault-Tree Analysis on Printed Circuit Board Assembly. Microelectron. Reliab. 2006, 46, 2139–2148. [Google Scholar] [CrossRef]
- Dai, W.; Zhong, Q.; Qi, C. Multi-Stage Multi-Attribute Decision-Making Method Based on the Prospect Theory and Triangular Fuzzy MULTIMOORA. Soft Comput. 2020, 24, 9429–9440. [Google Scholar] [CrossRef]
- Liu, A.-F. Topsis Method for Multiple Attribute Decision Making under Trapezoidal Intuitionistic Fuzzy Environment. J. Intell. Fuzzy Syst. 2014, 26, 2403–2409. [Google Scholar] [CrossRef]
- Narayanamoorthy, S.; Geetha, S.; Rakkiyappan, R.; Joo, Y.H. Interval-Valued Intuitionistic Hesitant Fuzzy Entropy Based VIKOR Method for Industrial Robots Selection. Expert Syst. Appl. 2019, 121, 28–37. [Google Scholar] [CrossRef]
- Pamučar, D.; Ćirović, G. The Selection of Transport and Handling Resources in Logistics Centers Using Multi-Attributive Border Approximation Area Comparison (MABAC). Expert Syst. Appl. 2015, 42, 3016–3028. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Milićević, M. The Combination of Expert Judgment and GIS-MAIRCA Analysis for the Selection of Sites for Ammunition Depots. Sustainability 2016, 8, 372. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Optimization of Weighted Aggregated Sum Product Assessment. Electron. Electr. Eng. 2012, 122, 3–6. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Peldschus, F.; Turskis, Z. Multi-Attribute Assessment of Road Design Solutions by Using the COPRAS Method. Balt. J. Road Bridge Eng. 2007, 2, 195–203. [Google Scholar]
- Gopal, N.; Panchal, D. A Structured Framework for Reliability and Risk Evaluation in the Milk Process Industry under Fuzzy Environment. Facta Univ. Ser. Mech. Eng. 2021, 19, 307. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean Membership Grades in Multicriteria Decision Making. IEEE Trans. Fuzzy Syst. 2014, 22, 958–965. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Kazimieras Zavadskas, E.; Turskis, Z. A Combined Compromise Solution (CoCoSo) Method for Multi-Criteria Decision-Making Problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z. A New Additive Ratio Assessment (ARAS) Method in Multicriteria Decision-making. Technol. Econ. Dev. Econ. 2010, 16, 159–172. [Google Scholar] [CrossRef]
- Shemshadi, A.; Shirazi, H.; Toreihi, M.; Tarokh, M.J. A Fuzzy VIKOR Method for Supplier Selection Based on Entropy Measure for Objective Weighting. Expert Syst. Appl. 2011, 38, 12160–12167. [Google Scholar] [CrossRef]
- Wang, J.; Gao, H.; Wei, G.; Wei, Y. Methods for Multiple-Attribute Group Decision Making with q-Rung Interval-Valued Orthopair Fuzzy Information and Their Applications to the Selection of Green Suppliers. Symmetry 2019, 11, 56. [Google Scholar] [CrossRef]
- Liu, L.; Cao, W.; Shi, B.; Tang, M. Large-Scale Green Supplier Selection Approach under a Q-Rung Interval-Valued Orthopair Fuzzy Environment. Processes 2019, 7, 573. [Google Scholar] [CrossRef]
- Turskis, Z.; Zavadskas, E.K. A New Fuzzy Additive Ratio Assessment Method (ARAS-F). Case Study: The Analysis of Fuzzy Multiple Criteria in Order to Select the Logistic Centers Location. Transport 2010, 25, 423–432. [Google Scholar] [CrossRef]
- Brauers, W.K.; Zavadskas, E.K. The MOORA Method and Its Application to Privatization in a Transition Economy. Control Cybern. 2006, 35, 445–469. [Google Scholar]
- Brauers, W.K.M.; Zavadskas, E.K. Project Management by MULTIMOORA as an Instrument for Transition Economies. Technol. Econ. Dev. Econ. 2010, 16, 5–24. [Google Scholar] [CrossRef]
- Du, Y.; Hou, F.; Zafar, W.; Yu, Q.; Zhai, Y. A Novel Method for Multiattribute Decision Making with Interval-Valued Pythagorean Fuzzy Linguistic Information: Novel Method for Multiatribute Decision Making. Int. J. Intell. Syst. 2017, 32, 1085–1112. [Google Scholar] [CrossRef]
- Karnik, N.N.; Mendel, J.M. Centroid of a Type-2 Fuzzy Set. Inf. Sci. 2001, 132, 195–220. [Google Scholar] [CrossRef]



| RFs Weights/Failure Modes Priority | AHP | BWM | DEMATEL | Entropy | SWARA | Other/Subjective/ Aggregation |
|---|---|---|---|---|---|---|
| ARAS | [45] | [36,39,45,118] | ||||
| BWM | [99] | |||||
| CoCoSo | [100] | [41] | ||||
| COPRAS | [86] | [38] | [56,176] | |||
| DEMATEL | [121,136] | |||||
| EDAS | [142] | |||||
| ELECTRE | [132] | |||||
| MABAC | [34] | [148] | ||||
| MAIRICA | [46] | |||||
| MARCOS | [46] | |||||
| MOORA | [89] | [62] | [40] | [63] | ||
| MULTI- MOORA | [133,134] | |||||
| ORESTE | [90,143] | |||||
| PROMETHEE | [73,130,135] | |||||
| RPN/AP | [85] | [47] | [144] | |||
| TODIM | [111] | [101,113] | ||||
| TOPSIS | [43,84,126] | [35] | [46] | [126] | [24,33,75,116,117,119,120,124,127,131,132,137,140,147,150,176] | |
| VIKOR | [84,112,123,128,139] | [94,95] | [109,112] | [37,44,118] | ||
| WASPAS | [61] | [98] | [110] | [118] | ||
| Other | [87,88] | [69] |
| MADM Method | FSs | IT2FSs | IFSs | SFSs | PFSs | Z-Numbers | Other FSs | Other Theories |
|---|---|---|---|---|---|---|---|---|
| AHP | [43,45,84,85,87,99,126,142] | [86,88] | [123] | [89] | [45] | [61] | ||
| ARAS | [45,118] | [45] | [36] | |||||
| BWM | [62,94,99] | [47,95,98] | [35] | |||||
| CoCoSo | [41,100] | |||||||
| COPRAS | [176] | [86] | [38] | [56] | ||||
| DEMATEL | [121,136] | [46] | ||||||
| EDAS | [142] | |||||||
| ELECTRE | [132] | |||||||
| Entropy | [94,110] | |||||||
| MABAC | [148] | [34] | ||||||
| MAIRICA | [46] | |||||||
| MARCOS | ||||||||
| MOORA | [63] | [89] | [40,62] | |||||
| MULTIMOORA | [134] | [133] | ||||||
| ORESTE | [90,143] | |||||||
| PROMETHEE | [135] | [130] | [73] | |||||
| RPN/AP | [144] | |||||||
| SWARA | [41] | [38] | [40] | |||||
| TODIM | [113] | [111] | [101] | |||||
| TOPSIS | [43,84,117,119,120,126,127,137,140,176] | [46] | [131,147,150] | [124] | [24,75,116] | [33,35] | ||
| VIKOR | [44,84,94,112,118,139] | [95,128] | [109,123] | [37] | ||||
| WASPAS | [110,118] | [98] | [61] | |||||
| Other | [45] | [69] |
| MADM Method | Manufacturing Industry | Energy and Chemical Industry | Healthcare | Marine Industry | Electronic Industry | Automotive Industry | Project Management | Information Technology | Other |
|---|---|---|---|---|---|---|---|---|---|
| AHP | [84,85,123,128] | [45,142] | [61] | [87,88] | [89] | [86,126] | [43] | ||
| ARAS | [36,39] | [45] | [118] | ||||||
| BWM | [94,95,98] | [34] | [99,100] | [35] | [47,62] | ||||
| CoCoSo | [41] | [100] | |||||||
| COPRAS | [56,176] | [38] | [86] | ||||||
| DEMATEL | [46] | [136] | [121] | ||||||
| EDAS | [142] | ||||||||
| ELECTRE | [132] | ||||||||
| Entropy | [94] | [126] | |||||||
| MABAC | [148] | [34] | |||||||
| MAIRICA | [46] | ||||||||
| MARCOS | |||||||||
| MOORA | [40] | [63] | [62] | [89] | |||||
| MULTI- MOORA | [133,134] | ||||||||
| ORESTE | [143] | [90] | |||||||
| PROME- THEE | [130] | [73] | [135] | ||||||
| RPN/AP | [144] | ||||||||
| SWARA | [40] | [38,41] | |||||||
| TODIM | [111] | [101,113] | |||||||
| TOPSIS | [24,33,46,75,84,117,124,127,140,176] | [119,131,150] | [116] | [35,137] | [120,126] | [43,147] | |||
| VIKOR | [84,94,95,123,128] | [44] | [112,118] | [37] | [139] | [109] | |||
| WASPAS | [46,98,110] | [118] | [61] | ||||||
| Other | [45,69] |
| Applied Research Domain | FSs | IT2FSs | IFSs | SFSs | PFSs | Z-Numbers | Other FSs | Other Theories |
|---|---|---|---|---|---|---|---|---|
| Manufacturing industry | [84,85,94,110,117,127,140,176] | [46,95,98,128] | [123,148] | [124] | [39,40] | [24,36,56,75,111] | [33] | |
| Energy and chemical industry | [44,45,119,142] | [143,144] | [113,131,150] | [41] | [38] | [34,69,130] | [101] | |
| Healthcare | [99,112,118] | [63,100] | [73] | |||||
| Marine industry | [136] | [90] | [61,116] | [37] | ||||
| Electronic industry | [121,137] | [135] | [132] | [35] | ||||
| Automotive industry | [62,87] | [47,88] | [62] | |||||
| Project management | [139] | [134] | [89,133] | |||||
| Information technology | [120,126] | [86] | ||||||
| Other | [43] | [109,147] |
| Journal Name | Count | Journal Name | Count |
|---|---|---|---|
| Agriculture | 1 | International Journal of Intelligent Computing and Cybernetics | 1 |
| Applied Soft Computing | 6 | International Journal of Productivity and Quality Management | 1 |
| Axioms | 1 | International Journal of Quality and Reliability Management | 1 |
| Complex and Intelligent Systems | 1 | Journal of Digital Information Management | 1 |
| Complexity | 1 | Journal of Engineering, Design and Technology | 2 |
| Computers and Industrial Engineering | 1 | Journal of Fuzzy Extension and Application | 1 |
| Decision Making: Applications In Management and Engineering | 1 | Journal of Intelligent and Fuzzy Systems | 1 |
| Decision Science Letters | 1 | Journal of Loss Prevention In The Process Industries | 1 |
| Energies | 1 | Journal of Petroleum Science and Engineering | 1 |
| Entropy | 1 | Journal of the Operational Research Society | 1 |
| Environment, Development and Sustainability | 1 | Kybernetes | 1 |
| Environmental Science and Pollution Research | 1 | Mathematics | 1 |
| Expert Systems | 1 | Maritime Policy and Management | 1 |
| Expert Systems with Applications | 1 | Neural Computing and Applications | 1 |
| Facta Universitatis, Series: Mechanical Engineering | 3 | Plos One/Public Library Of Science | 1 |
| Human And Ecological Risk Assessment | 1 | Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture | 1 |
| IEEE Access | 1 | Proceedings Of The Institution Of Mechanical Engineers, Part D: Journal Of Automobile Engineering | 1 |
| IEEE Transactions on Fuzzy Systems | 1 | Proceedings Of The Institution Of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering | 1 |
| IEEE Transactions on Reliability | 1 | Process Safety And Environmental Protection | 3 |
| Informatica | 1 | Quality and Reliability Engineering International | 5 |
| Information | 1 | Quality Engineering | 1 |
| International Journal of Advanced Manufacturing Technology | 1 | Risk Analysis | 1 |
| International Journal of Computational Intelligence Systems | 2 | Soft Computing | 3 |
| International Journal of Computer Integrated Manufacturing | 1 | Symmetry | 1 |
| International Journal of Fuzzy Systems | 1 | Water Supply | 1 |
| International Journal of Industrial Ergonomics | 1 |
| Rank | Country | Number of Authors | Percentage |
|---|---|---|---|
| 1 | China | 73 | 41.5% |
| 2 | Iran | 29 | 16.5% |
| 3 | Turkey | 19 | 10.8% |
| 4 | Serbia | 9 | 5.1% |
| 5 | India | 8 | 4.5% |
| 6 | Australia | 5 | 2.8% |
| 7 | Indonesia | 4 | 2.3% |
| 8 | Malaysia | 3 | 1.7% |
| 9 | Bosnia, Canada, Croatia, Pakistan, Peru, Poland, Spain, Taiwan, Thailand, USA | 2 | 1.1% |
| 10 | Austria, Czech Republic, France, Hungary, Qatar, United Kingdom | 1 | 0.6% |
| Name | Country | Number of Publications | Publications |
|---|---|---|---|
| Komatina, N. | Serbia | 6 | [47,86,87,88,95,123] |
| Liu, H.-C. | China | 6 | [33,56,73,112,121,137] |
| Ghoushchi, S.J. | Iran | 5 | [40,41,62,63,100] |
| Tadić, D. | Serbia | 5 | [47,86,87,88,95] |
| Aleksić, A. | Serbia | 4 | [47,87,88,95] |
| Li, H. | China | 4 | [113,133,134,139] |
| Wang, L. | China | 4 | [113,133,134,139] |
| Wang, W. | China | 4 | [69,90,109,143] |
| You, J.-X. | China | 4 | [56,112,121,137] |
| Gul, M. | Turkey | 3 | [24,116,124] |
| Li, F. | China | 3 | [113,133,139] |
| Li, G. | China | 3 | [75,128,130] |
| Panchal, D. | India | 3 | [131,150,176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksić, A.; Tadić, D.; Komatina, N.; Nestić, S. Failure Mode and Effects Analysis Integrated with Multi-Attribute Decision-Making Methods Under Uncertainty: A Systematic Literature Review. Mathematics 2025, 13, 2216. https://doi.org/10.3390/math13132216
Aleksić A, Tadić D, Komatina N, Nestić S. Failure Mode and Effects Analysis Integrated with Multi-Attribute Decision-Making Methods Under Uncertainty: A Systematic Literature Review. Mathematics. 2025; 13(13):2216. https://doi.org/10.3390/math13132216
Chicago/Turabian StyleAleksić, Aleksandar, Danijela Tadić, Nikola Komatina, and Snežana Nestić. 2025. "Failure Mode and Effects Analysis Integrated with Multi-Attribute Decision-Making Methods Under Uncertainty: A Systematic Literature Review" Mathematics 13, no. 13: 2216. https://doi.org/10.3390/math13132216
APA StyleAleksić, A., Tadić, D., Komatina, N., & Nestić, S. (2025). Failure Mode and Effects Analysis Integrated with Multi-Attribute Decision-Making Methods Under Uncertainty: A Systematic Literature Review. Mathematics, 13(13), 2216. https://doi.org/10.3390/math13132216

