MultS-ORB: Multistage Oriented FAST and Rotated BRIEF
Abstract
1. Introduction
- We propose a novel multistage optimization strategy for feature matching under illumination-induced blurring. By introducing local motion smoothness constraints and combining them with Hamming-space similarity, the method significantly improves matching robustness in challenging conditions.
- We design a spatial-consistency-based criterion to identify and eliminate false matches, using the neighborhood support of feature pairs. This strategy reduces the influence of illumination variation and enhances the accuracy of the initial match set.
- We present a new matching method, MultS-ORB, which retains the efficiency of the traditional ORB algorithm while significantly boosting its accuracy under illumination blur. Extensive experiments on multiple datasets validate the effectiveness, robustness, and real-time potential of our method.
2. Related Work
3. Method Overview
4. Method Details
4.1. Fundamentals of ORB Feature Extraction and Matching
4.1.1. Input Preprocessing
4.1.2. FAST Corner Detection
4.1.3. BRIEF Feature Descriptor Generation
4.2. Feature Initial Relationship Construction
4.3. Feature False Match Elimination
4.4. Feature Matching Optimization
5. Experiment and Analysis
5.1. Dataset Selection
5.2. Selection of Evaluation Criteria
5.3. Parameter Variation Experiment
5.4. Ablation Experiments
5.5. Experimental Effect Demonstration
5.6. Method Comparison and Analysis
5.7. Generalization Ability Verification in Non-Illumination Blur Scenarios
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhang, X.; Song, Z.; Bi, J.; Zhang, G.; Wei, H.; Tang, L.; Yang, L.; Li, J.; Jia, C.; et al. Multi-modal 3D Object Detection in Autonomous Driving: A Survey and Taxonomy. IEEE Trans. Intell. Veh. 2023, 8, 3781–3798. [Google Scholar] [CrossRef]
- Xu, P.; Ding, L.; Li, Z.; Yang, H.; Wang, Z.; Gao, H.; Zhou, R.; Su, Y.; Deng, Z.; Huang, Y. Learning physical characteristics like animals for legged robots. Natl. Sci. Rev. 2023, 10, nwad045. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, L.; Chen, H.; Zhang, R. Delta Path Tracing for Real-Time Global Illumination in Mixed Reality. In Proceedings of the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Shanghai, China, 25–29 March 2023; pp. 44–52. [Google Scholar]
- Song, S.; Funkhouser, T. Neural Illumination: Lighting Prediction for Indoor Environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 6911–6919. [Google Scholar]
- Bao, Z.; Long, C.; Fu, G.; Liu, D.; Li, Y.; Wu, J.; Xiao, C. Deep Image-Based Illumination Harmonization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 18542–18551. [Google Scholar]
- Chen, C.; Chen, Q.; Xu, J.; Koltun, V. Learning to see in the dark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3291–3300. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up Robust Features. In Proceedings of the Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Proceedings, Part I 9. Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Yu, G.; Morel, J.M. ASIFT: An algorithm for fully affine invariant comparison. Image Process. Line 2011, 1, 11–38. [Google Scholar] [CrossRef]
- Shokouh, G.S.; Magnier, B.; Xu, B.; Montesinos, P. Repeatability Evaluation of Keypoint Detection Techniques in Tracking Underwater Video Frames. In Proceedings of the Workshop on Computer Vision for Analysis of Underwater Imagery, Montréal, QC, Canada, 19–20 June 2022; pp. 489–503. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 2564–2571. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. Brief: Binary robust independent elementary features. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–11 September 2010; pp. 778–792. [Google Scholar]
- Ye, F.; Hong, Z.; Lai, Y.; Zhao, Y.; Xie, X. Multipurification of Matching Pairs Based on ORB Feature and PCB Alignment Case Study. J. Electron. Imaging 2018, 27, 033029. [Google Scholar] [CrossRef]
- Sun, C.; Qiao, N.; Sun, J. Robust feature matching based on adaptive ORB for vision-based robot navigation. In Proceedings of the 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Nanchang, China, 28–30 May 2021. [Google Scholar]
- Wang, N.N.; Wang, B.; Wang, W.P.; Guo, X.H. Computing Medial Axis Transform with Feature Preservation via Restricte Power Diagram. ACM Trans. Graph. 2022, 41, 1–18. [Google Scholar]
- Sun, C.; Wu, X.; Sun, J.; Qiao, N.; Sun, C. Multi-stage refinement feature matching using adaptive ORB features for robotic vision navigation. IEEE Sens. J. 2021, 22, 2603–2617. [Google Scholar] [CrossRef]
- Agakidis, A.; Bampis, L.; Gasteratos, A. Illumination Conditions Adaptation for Data-Driven Keypoint Detection under Extreme Lighting Variations. In Proceedings of the 2023 IEEE International Conference on Imaging Systems and Techniques (IST), Shenzhen, China, 13–15 October 2023; pp. 1–6. [Google Scholar]
- Shakeri, M.; Zhang, H. Illumination Invariant Representation of Natural Images for Visual Place Recognition. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 466–472. [Google Scholar]
- Chen, P.H.; Luo, Z.X.; Huang, Z.K.; Yang, C.; Chen, K.W. IF-Net: An Illumination-Invariant Feature Network. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 15 September 2020; pp. 8630–8636. [Google Scholar]
- Jing, W.; Chi, K.; Li, Q.; Wang, Q. 3D Neighborhood Cross Differencing: A New Paradigm Serves Remote Sensing Change Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–11. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Ramdom sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Torr, P.H.; Zisserman, A. MLESAC: A new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef]
- Chum, O.; Matas, J. Matching with PROSAC-progressive sample consensus. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 220–226. [Google Scholar]
- Sattler, T.; Leibe, B.; Kobbelt, L. SCRAMSAC: Improving RANSAC’s efficiency with a spatial consistency filter. In Proceedings of the 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 2090–2097. [Google Scholar]
- Raguram, R.; Chum, O.; Pollefeys, M.; Matas, J.; Frahm, J.M. USAC: A universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2022–2038. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.D.; Li, Z.W.; Wang, K.; Gao, Y.; Gong, H.C. Image Matching Based on Improved RANSAC-GMS Algorithm. J. Comput. Appl. 2019, 39, 2396–2401. [Google Scholar]
- Bian, J.; Lin, W.Y.; Matsushita, Y.; Yeung, S.K.; Nguyen, T.D.; Cheng, M.M. Gms: Grid-based motion statistics for fast, ultra-robust feature correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4181–4190. [Google Scholar]
- Chen, F.; Han, J.; Wang, Z.; Cheng, J. Image Registration Algorithm Based on Improved GMS and Weighted Projection Transformation. Laser Optoelectron. Prog. 2018, 55, 180–186. [Google Scholar]
- Sun, C.; Wu, X.; Sun, J.; Sun, C.; Dong, L. Robust Pose Estimation via Hybrid Point and Twin Line Reprojection for RGB-D Vision Navigation. IEEE Trans. Instrum. Meas. 2022, 71, 1–19. [Google Scholar] [CrossRef]
- Yu, H.; Fu, Q.; Yang, Z.; Tan, L.; Sun, W.; Sun, M. Robust Robot Pose Estimation for Challenging Scenes with an RGB-D Camera. IEEE Sens. J. 2019, 19, 2217–2229. [Google Scholar] [CrossRef]
- Lin, W.Y.; Cheng, M.M.; Lu, J.; Yang, H.; Do, M.N.; Torr, P.H.S. Bilateral Functions for Global Motion Modeling. In Proceedings of the ECCV, Zurich, Switzerland, 6–12 September 2014; pp. 341–356. [Google Scholar]
- Hong, Q.; Jiang, H.; Xiao, P.; Du, S.; Li, T. A Parallel Computing Scheme Utilizing Memristor Crossbars for Fast Corner Detection and Rotation Invariance in the ORB Algorithm. IEEE Trans. Comput. 2024, 74, 996–1010. [Google Scholar] [CrossRef]
- Xiao, P.D.; Fang, J.J.; Wei, Z.M.; Dong, Y.; Du, S.C.; Wen, S.P. A Riccati Matrix Equation Solver Design Based Neurodynamics Method and Its Application. IEEE Trans. Autom. Sci. Eng. 2025, 22, 15163–15176. [Google Scholar] [CrossRef]
- The Principle Detailed Explanation of ORB Feature Extraction Algorithm. Available online: https://blog.csdn.net/qq_43616471 (accessed on 24 June 2025).
- Balntas, V.; Lenc, K.; Vedaldi, A.; Mikolajczyk, K. HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5173–5182. [Google Scholar]
- Morago, B.; Bui, G.; Duan, Y. An Ensemble Approach to Image Matching Using Contextual Features. IEEE Trans. Image Process. 2015, 24, 4474–4487. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, Q.; Ai, M. RIFT: Multi-Modal Image Matching Based on Radiation-Variation Insensitive Feature Transform. IEEE Trans. Image Process. 2020, 29, 3296–3310. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Guo, B.; Huang, Z.; Zhang, S. An Improved UAV Aerial Image Mosaic Algorithm Based on GMS-RANSAC. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing, ICSIP 2020, Nanjing, China, 23–25 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 148–152. [Google Scholar]
Abbreviation | Matching Techniques |
---|---|
KT-ORB | KNN + TF |
KTG-ORB | KNN + TF + GMS |
MULTS-ORB (Ours) | KNN + TF + GMS + PROSAC |
Image Pairs | Leuven | ||
---|---|---|---|
KT-ORB | KTG-ORB | MultS-ORB (Ours) | |
1-2 | 1120 | 1025 | 1019 |
1-3 | 852 | 817 | 810 |
1-4 | 382 | 342 | 336 |
1-5 | 139 | 103 | 102 |
1-6 | 35 | 10 | 9 |
Std | 416.86 | 397.63 | 395.45 |
Average | 505.6 | 459.4 | 455.2 |
Algorithm Method | ME ↓ | |
---|---|---|
Average | Std | |
KT-ORB | 23.852 | 10.737 |
KTG-ORB | 23.836 | 9.545 |
MultS-ORB (Ours) | 23.731 | 9.447 |
Algorithm Method | RMSE ↓ | |
---|---|---|
Average | Std | |
KT-ORB | 25.373 | 12.362 |
KTG-ORB | 25.350 | 10.889 |
MultS-ORB (Ours) | 25.233 | 10.743 |
Image Pairs | Leuven | Construction | Lionday | Whitebuilding |
---|---|---|---|---|
1-2 | 1019 | 928 | 24 | 1208 |
1-3 | 810 | 767 | 53 | 583 |
1-4 | 336 | 456 | 9 | 94 |
1-5 | 102 | 330 | 11 | 80 |
1-6 | 9 | 198 | 47 | 84 |
Image Sets | SIFT [7] | ORB [11] | KGR-ORB [38] | MULTS-ORB (Ours) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
REP ↑ | ME ↓ | RMSE ↓ | REP ↑ | ME ↓ | RMSE ↓ | REP ↑ | ME ↓ | RMSE ↓ | REP ↑ | ME ↓ | RMSE ↓ | |
Leuven | 0.03% | 130.79 | 137.95 | 0.37% | 33.91 | 37.02 | 0.51% | 27.29 | 30.56 | 0.67% | 23.73 | 25.23 |
Construction | 84.37% | 105.79 | 115.02 | 0.35% | 30.19 | 33.75 | 0.57% | 31.91 | 35.18 | 0.52% | 20.07 | 22.19 |
Lionday | 15.28% | 147.72 | 155.13 | 0.57% | 50.64 | 52.15 | 1.08% | 41.18 | 43.04 | 1.47% | 30.15 | 29.45 |
Whitebuilding | 74.03% | 98.23 | 111.78 | 0.21% | 35.72 | 39.32 | 0.84% | 29.21 | 33.04 | 2.04% | 25.63 | 26.02 |
Stage | ORB [11] | MULTS-ORB (Ours) |
---|---|---|
Image Loading | 5.052 ms | 9.478 ms |
Feature Extraction | 72.147 ms | 76.392 ms |
Matching Stage | 48.469 ms | 51.090 ms |
Total Execution Time | 125.68 ms | 140.08 ms |
SIFT [7] | ORB [11] | KGR-ORB [38] | MULTS-ORB (Ours) | |
---|---|---|---|---|
Time (ms) | 1400.2 | 125.68 | 145.41 | 140.08 |
Image Pairs | Trees | ||
---|---|---|---|
KT-ORB | KTG-ORB | MultS-ORB (Ours) | |
1-2 | 378 | 316 | 311 |
1-3 | 291 | 227 | 226 |
1-4 | 153 | 110 | 108 |
1-5 | 89 | 53 | 52 |
1-6 | 34 | 15 | 14 |
Std | 132.7 | 113.5 | 112.9 |
Average | 189 | 144.2 | 142.2 |
Image Sets | SIFT [7] | ORB [11] | KGR-ORB [38] | MULTS-ORB (Ours) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
REP ↑ | ME ↓ | RMSE ↓ | REP ↑ | ME ↓ | RMSE ↓ | REP ↑ | ME ↓ | RMSE ↓ | REP ↑ | ME ↓ | RMSE ↓ | |
Trees | 0.09% | 161.58 | 167.29 | 0.35% | 45.81 | 47.44 | 1.38% | 44.41 | 46.87 | 0.41% | 31.47 | 32.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Y.; Ma, J.; Yang, J.; Huang, L.; Ning, X. MultS-ORB: Multistage Oriented FAST and Rotated BRIEF. Mathematics 2025, 13, 2189. https://doi.org/10.3390/math13132189
Zhang S, Wang Y, Ma J, Yang J, Huang L, Ning X. MultS-ORB: Multistage Oriented FAST and Rotated BRIEF. Mathematics. 2025; 13(13):2189. https://doi.org/10.3390/math13132189
Chicago/Turabian StyleZhang, Shaojie, Yinghui Wang, Jiaxing Ma, Jinlong Yang, Liangyi Huang, and Xiaojuan Ning. 2025. "MultS-ORB: Multistage Oriented FAST and Rotated BRIEF" Mathematics 13, no. 13: 2189. https://doi.org/10.3390/math13132189
APA StyleZhang, S., Wang, Y., Ma, J., Yang, J., Huang, L., & Ning, X. (2025). MultS-ORB: Multistage Oriented FAST and Rotated BRIEF. Mathematics, 13(13), 2189. https://doi.org/10.3390/math13132189