Rat Locomotion Analysis Based on Straight Line Detection in Hough Space
Abstract
1. Introduction
2. Locomotion Analysis in Hough Space
2.1. Straight Line Detection
2.2. Point Detection: , ,
2.3. Length Measurement
2.4. Angle Measurement
3. Experimental Work
3.1. Experimental Design
3.2. Line Identification in the Hough Transform Space
3.3. Measurements
3.4. Discussion
- Performs motion analysis based on line detection in the Hough transform space.
- Achieves high precision; nonetheless, the error increases due to the thickness of the marked line and inadequate line detection in the Hough transform space.
- Marking thinner lines, the line detection is optimized and the error is reduced.
- For the calculation angles and distances, it is not a requirement that the detected lines intersect with one another.
- Motion statistics can be implemented through video analysis where each frame is studied independently.
- It can be applied in real time through an artificial vision system.
- It was applied for rat locomotion, but it can be used to study locomotion in people.
- It can be employed in drug development tests.
- It could achieve greater accuracy if circles are detected in the Hough transform space.
- The accuracy of the MMHTS method can improve whether image binarization is done using an adaptive technique.
- The error due to the selection of and points can be significantly reduced if the MMHTS method is combined with an automatic points location method.
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grillner, S.; El Manira, A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol. Rev. 2020, 100, 271–320. [Google Scholar] [CrossRef] [PubMed]
- Bogachev, M.; Sinitca, A.; Grigarevichius, K.; Pyko, N.; Lyanova, A.; Tsygankova, M.; Davletshin, E.; Petrov, K.; Ageeva, T.; Pyko, S.; et al. Video-based marker-free tracking and multi-scale analysis of mouse locomotor activity and behavioral aspects in an open field arena: A perspective approach to the quantification of complex gait disturbances associated with Alzheimer’s disease. Front. Neuroinform. 2023, 17, 1101112. [Google Scholar] [CrossRef]
- Tang, W.; Yarowsky, P.; Tasch, U. Detecting ALS and Parkinson’s disease in rats through locomotion analysis. Netw. Model. Anal. Health Inform. Bioinform. 2012, 1, 63–68. [Google Scholar] [CrossRef]
- Preisig, D.F.; Kulic, L.; Krüger, M.; Wirth, F.; McAfoose, J.; Späni, C.; Gantenbein, P.; Derungs, R.; Nitsch, R.M.; Welt, T. High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders. Behav. Brain Res. 2016, 311, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Hartog, A.; Hulsman, J.; Garssen, J. Locomotion and muscle mass measures in a murine model of collagen-induced arthritis. BMC Musculoskelet. Disord. 2009, 10, 59. [Google Scholar] [CrossRef]
- Yang, W.W.; Matyas, J.J.; Li, Y.; Lee, H.; Lei, Z.; Renn, C.L.; Faden, A.I.; Dorsey, S.G.; Wu, J. Dissecting Genetic Mechanisms of Differential Locomotion, Depression, and Allodynia after Spinal Cord Injury in Three Mouse Strains. Cells 2024, 13, 759. [Google Scholar] [CrossRef]
- Jing, Y.; Yu, Y.; Bai, F.; Wang, L.; Yang, D.; Zhang, C.; Qin, C.; Yang, M.; Zhang, D.; Zhu, Y.; et al. Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: Involvement of brain-gut axis. Microbiome 2021, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Danner, S.M.; Shepard, C.T.; Hainline, C.; Shevtsova, N.A.; Rybak, I.A.; Magnuson, D.S. Spinal control of locomotion before and after spinal cord injury. Exp. Neurol. 2023, 368, 114496. [Google Scholar] [CrossRef]
- Aragão Rda, S.; Rodrigues, M.A.; de Barros, K.M.; Silva, S.R.; Toscano, A.E.; de Souza, R.E.; Manhães-de-Castro, R. Automatic system for analysis of locomotor activity in rodents--a reproducibility study. J. Neurosci. Methods 2011, 195, 216–221. [Google Scholar] [CrossRef]
- Nakamura, A.; Funaya, H.; Uezono, N.; Nakashima, K.; Ishida, Y.; Suzuki, T.; Wakana, S.; Shibata, T. Low-cost three-dimensional gait analysis system for mice with an infrared depth sensor. Neurosci. Res. 2015, 100, 55–62. [Google Scholar] [CrossRef]
- Hamers, F.P.T.; Koopmans, G.C.; Joosten, E.A.J. CatWalk-Assisted Gait Analysis in the Assessment of Spinal Cord Injury. J. Neurotrauma 2006, 23, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Hamm, R.J.; Pike, B.R.; O’dell, D.M.; Lyeth, B.G.; Jenkins, L.W. The rotarod test: An evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J. Neurotrauma 1994, 11, 187–196. [Google Scholar] [CrossRef]
- Kirkpatrick, N.J.; Butera, R.J.; Chang, Y.-H. DeepLabCut increases markerless tracking efficiency in X-ray video analysis of rodent locomotion. J. Exp. Biol. 2022, 225, jeb244540. [Google Scholar] [CrossRef]
- Shinba, T.; Yamamoto, K.; Cao, G.M.; Mugishima, G.; Andow, Y.; Hoshino, T. Effects of acute methamphetamine administration on spacing in paired rats: Investigation with an automated video-analysis method. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1996, 20, 1037–1049. [Google Scholar] [CrossRef]
- Dominici, N.; Keller, U.; Vallery, H.; Friedli, L.; Van Den Brand, R.; Starkey, M.L.; Musienko, P.; Riener, R.; Courtine, G. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat. Med. 2012, 18, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Risse, B.; Berh, D.; Otto, N.; Klämbt, C.; Jiang, X. FIMTrack: An open source tracking and locomotion analysis software for small animals. PLoS Comput. Biol. 2017, 13, e1005530. [Google Scholar] [CrossRef] [PubMed]
- Gravel, P.; Tremblay, M.; Leblond, H.; Rossignol, S.; de Guise, J.A. A semi-automated software tool to study treadmill locomotion in the rat: From experiment videos to statistical gait analysis. J. Neurosci. Methods 2010, 190, 279–288. [Google Scholar] [CrossRef]
- Hruska, R.E.; Kennedy, S.; Silbergeld, E.K. Quantitative aspects of normal locomotion in rats. Life Sci. 1979, 25, 171–180. [Google Scholar] [CrossRef]
- Noldus, L.P.; Spink, A.J.; Tegelenbosch, R.A. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 2001, 33, 398–414. [Google Scholar] [CrossRef]
- Antunes, F.D.; Goes, T.C.; Vígaro, M.G.; Teixeira-Silva, F. Automation of the free-exploratory paradigm. J. Neurosci. Methods 2011, 197, 216–220. [Google Scholar] [CrossRef]
- Otero, L.; Zurita, M.; Aguayo, C.; Bonilla, C.; Rodríguez, A.; Vaquero, J. Video-Tracking-Box linked to Smart software as a tool for evaluation of locomotor activity and orientation in brain-injured rats. J. Neurosci. Methods 2010, 188, 53–57. [Google Scholar] [CrossRef]
- Vorhees, C.V.; Acuff-Smith, K.D.; Minck, D.R.; Butcher, R.E. A method for measuring locomotor behavior in rodents: Contrast-sensitive computer-controlled video tracking activity assessment in rats. Neurotoxicology Teratol. 1992, 14, 43–49. [Google Scholar] [CrossRef]
- Tang, Q.; P Williams, S.; D Güler, A. A building block-based beam-break (B(5)) locomotor activity monitoring system and its use in circadian biology research. Biotechniques 2022, 73, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Krizsan-Agbas, D.; Winter, M.K.; Eggimann, L.S.; Meriwether, J.; Berman, N.E.; Smith, P.G.; McCarson, K.E. Gait analysis at multiple speeds reveals differential functional and structural outcomes in response to graded spinal cord injury. J. Neurotrauma 2014, 31, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Batka, R.J.; Brown, T.J.; Mcmillan, K.P.; Meadows, R.M.; Jones, K.J.; Haulcomb, M.M. The need for speed in rodent locomotion analyses. Anat. Rec. 2014, 297, 1839–1864. [Google Scholar] [CrossRef] [PubMed]
- Kaijima, M.; Foutz, T.L.; McClendon, R.W.; Budsberg, S.C. Diagnosis of lameness in dogs by use of artificial neural networks and ground reaction forces obtained during gait analysis. Am. J. Vet. Res. 2012, 73, 973–978. [Google Scholar] [CrossRef]
- Ben Chaabane, N.; Conze, P.H.; Lempereur, M.; Quellec, G.; Rémy-Néris, O.; Brochard, S.; Cochener, B.; Lamard, M. Quantitative gait analysis and prediction using artificial intelligence for patients with gait disorders. Sci. Rep. 2023, 13, 23099. [Google Scholar] [CrossRef]
- Rodrigues, C.; Correia, M.; Abrantes, J.M.; Rodrigues, M.A.; Nadal, J. Generalized Lower Limb Joint Angular Phase Space Analysis of Subject Specific Normal and Modified Gait. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 1490–1493. [Google Scholar]
- Gavrilović, M.; Popović, D.B. A principal component analysis (PCA) based assessment of the gait performance. Biomed. Tech. 2021, 66, 449–457. [Google Scholar] [CrossRef]
- Baudet, A.; Morisset, C.; d’Athis, P.; Maillefert, J.F.; Casillas, J.M.; Ornetti, P.; Laroche, D. Cross-talk correction method for knee kinematics in gait analysis using principal component analysis (PCA): A new proposal. PLoS ONE 2014, 9, e102098. [Google Scholar] [CrossRef]
- Gómez-Vega, C.A.; Ramírez-Medina, V.; Méndez-García, M.O.; Alba, A.; Salgado-Delgado, R. Rastreo de movimiento de roedores usando visión computacional. Mem. Del Congr. Nac. Ing. Biomédica 2015, 2, 196–199. [Google Scholar]
- Oderkerk, B.J.; Inbar, G.F. Walking cycle recording and analysis for FNS-assisted paraplegic walking. Med. Biol. Eng. Comput. 1991, 29, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Nishida, T.; Ikezoe, T.; Fujita, K.; Miyakoshi, Y.; Masani, K. Three-dimensional analysis of locomotion patterns after hindlimb suspension and subsequent long-term reloading in growing rats. J. Biomech. 2024, 176, 112389. [Google Scholar] [CrossRef] [PubMed]
Line | Detected Line Parameters in the Hough Transform Space | |
---|---|---|
(Degrees) | (In Pixel Terms) | |
1 | 239 | |
−48 | 68 | |
34 | 409 | |
−64 | −126 |
Section 1: Measurement Results Obtained by AutoCAD 2016® Software | |||
---|---|---|---|
Line | Intersection points:
,
,
, Equation (16) [Pixels] | Length | |
Section 2: Measurement results obtained by Equation system (31) | |||
Line | Intersection points:
,
,
, Equation (16) [Pixels] | Length | Angles, Equation (30) |
Intersection Point Error | Line Length Error | Angle Measurement Error |
---|---|---|
Method | Advantages | Disadvantages |
---|---|---|
Commercial systems (e.g., CatWalk XT®, DigiGait®) | High precision in kinematic and dynamic measurements; advanced automation; real-time multiplanar analysis | High cost; requires specialized equipment; limited accessibility in low-budget laboratories |
Deep learning-based tracking (e.g., DeepLabCut) | Markerless; high accuracy; flexible across species and configurations | Requires neural network training; needs programming expertise and GPU-based computation |
Manual video analysis (e.g., Kinovea) | Free; easy to use; useful for exploratory or educational purposes | High manual input; lower precision; not suitable for large datasets or automated workflows |
MMHTS (this study) | Low cost; no commercial software required; simple implementation; validated low error (<0.14°); partially automatable | Limited to 2D; requires anatomical marking; sensitive to perspective and orientation if uncontrolled |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillen Bonilla, J.T.; Bonilla, H.G.; Franco Rodríguez, N.E.; García Ramírez, M.A.; Guillen Bonilla, A.; Jiménez Rodríguez, M.; Sánchez Morales, M.E. Rat Locomotion Analysis Based on Straight Line Detection in Hough Space. Mathematics 2025, 13, 2187. https://doi.org/10.3390/math13132187
Guillen Bonilla JT, Bonilla HG, Franco Rodríguez NE, García Ramírez MA, Guillen Bonilla A, Jiménez Rodríguez M, Sánchez Morales ME. Rat Locomotion Analysis Based on Straight Line Detection in Hough Space. Mathematics. 2025; 13(13):2187. https://doi.org/10.3390/math13132187
Chicago/Turabian StyleGuillen Bonilla, José Trinidad, Héctor Guillen Bonilla, Nancy Elizabeth Franco Rodríguez, Mario Alberto García Ramírez, Alex Guillen Bonilla, Maricela Jiménez Rodríguez, and María Eugenia Sánchez Morales. 2025. "Rat Locomotion Analysis Based on Straight Line Detection in Hough Space" Mathematics 13, no. 13: 2187. https://doi.org/10.3390/math13132187
APA StyleGuillen Bonilla, J. T., Bonilla, H. G., Franco Rodríguez, N. E., García Ramírez, M. A., Guillen Bonilla, A., Jiménez Rodríguez, M., & Sánchez Morales, M. E. (2025). Rat Locomotion Analysis Based on Straight Line Detection in Hough Space. Mathematics, 13(13), 2187. https://doi.org/10.3390/math13132187