A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions
Abstract
1. Introduction
- For , Srivastava et al. [7] introduced and investigated the class for starlike functions.
- For , Taj et al. [8] defined and studied the class for starlike functions.
- For , Khan [9] defined and investigated for starlike functions.
- For , Swarup [10] introduced a new subclass of q-starlike functions associated with the q-extension of the hyperbolic tangent function.
2. Main Results
2.1. Convolution Results
2.2. Growth and Distortion Results
2.3. Radius of Starlikeness and Linear Combination
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley Sons: New York, NY, USA, 1989. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Jackson, F.H. On q-functions and certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: New York, NY, USA, 1992; pp. 157–169. [Google Scholar]
- Seoudy, T.; Aouf, M. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function. Bull. Sci. Math. 2021, 167, 102942. [Google Scholar] [CrossRef]
- Taj, Y.; Zainab, S.; Ferdous, Q.X.; Tawfiq, M.O.; Raza, M.; Malik, S.N. Certain coefficient problems for q-starlike functions associated with q-analogue of sine function. Symmetry 2022, 14, 2200. [Google Scholar] [CrossRef]
- Khan, M.F. Properties of q-starlike functions associated with the q-cosine function. Symmetry 2022, 14, 1117. [Google Scholar] [CrossRef]
- Swarup, C. Sharp coefficient bounds for a new subclass of q-starlike functions associated with q-analogue of the hyperbolic tangent function. Symmetry 2023, 15, 763. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q.Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with lemniscate of Bernoulli. J. Math. Inequal. 2020, 14, 51–63. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Jabeen, M.; Malik, S.N.; Mahmood, S.; Riaz, S.M.J.; Ali, M.S. On q-convex functions defined by the q-Ruscheweyh derivative operator in conic regions. J. Math. 2022, 2022, 2681789. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Malik, S.N. On q-Limaçon functions. Symmetry 2022, 14, 2422. [Google Scholar] [CrossRef]
- Al-Shaikh, S.B.; Baker, A.A.A.; Matarneh, K.; Khan, M.F. Some new applications of the q-analogous of differential and integral operators for new subclasses of q-starlike and q-convex functions. Fractal Fract. 2023, 7, 411. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Darus, M.; Hussain, S. Sharp coefficient inequalities for a class of analytic functions defined by q-difference operator associated with q-lemniscate of Bernoulli. Results Nonlinear Anal. 2023, 6, 55–73. [Google Scholar]
- Noor, K.I.; Lupas, A.A.; Shah, S.A.; Sibih, A.M.; Khalek, S.A. Study of generalized q-close-to-convex functions related to parabolic domain. J. Funct. Spaces 2023, 2023, 2608060. [Google Scholar] [CrossRef]
- Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp bounds of the Fekete–Szegö problem and second Hankel determinant for certain bi-univalent functions defined by a novel q-differential operator associated with q-Limaçon domain. Fractal Fract. 2023, 7, 506. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Padmanabhan, K.S.; Parvatham, R. Some applications of differential subordination. Bull. Aust. Math. Soc. 1985, 32, 321–330. [Google Scholar] [CrossRef]
- Shanmugam, T.N. Convolution and differential subordination. Int. J. Math. Math. Sci. 1989, 12, 333–340. [Google Scholar] [CrossRef]
- Hadia, S.H.; Darus, M. Differential subordination and superordination for a q-derivative operator connected with the q-exponential function. Int. J. Nonlinear Anal. Appl. 2022, 2, 2795–2806. [Google Scholar]
- Haq, M.U.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-analogue of differential subordinations. Mathematics 2019, 7, 724. [Google Scholar] [CrossRef]
- Raza, M.; Naz, H.; Malik, S.N.; Islam, S. On q-analogue of differential subordination associated with lemniscate of Bernoulli. J. Math. 2021, 2021, 5353372. [Google Scholar] [CrossRef]
- Zainab, S.; Shakeel, A.; Imran, M.; Muhammad, N.; Naz, H.; Malik, S.N.; Arif, M. Sufficiency criteria for q-starlike functions associated with cardioid. J. Funct. Spaces 2021, 2021, 9999213. [Google Scholar] [CrossRef]
- Khan, M.G.; Khan, B.; Gong, J.; Tchier, F.; Tawfiq, F.M.O. Applications of first-order differential subordination for subfamilies of analytic functions related to symmetric image domains. Symmetry 2023, 15, 2004. [Google Scholar] [CrossRef]
- Andrei, L.; Caus, V.-A. Subordination results on a q-derivative differential operator. Mathematics 2024, 12, 208. [Google Scholar] [CrossRef]
- Ali, R.M.; Cho, N.E.; Ravichandran, V.; Kumar, S.S. Differential subordination for functions associated with the lemniscate of Bernoulli. Taiwan. J. Math. 2012, 16, 1017–1026. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate. Turk. J. Math. 2018, 42, 1380–1399. [Google Scholar]
- Jack, I.S. Functions Starlike and Convex of Order α. J. Lond. Math. Soc. 1971, s2-3, 469–474. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Saliu, A.; Cătaş, A.; Malik, S.N.; Oladejo, S.O. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, P.; Ahmad, A.; Rasheed, A.; Hussain, S.; Tang, H.; Noor, S. A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions. Mathematics 2025, 13, 2173. https://doi.org/10.3390/math13132173
Bai P, Ahmad A, Rasheed A, Hussain S, Tang H, Noor S. A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions. Mathematics. 2025; 13(13):2173. https://doi.org/10.3390/math13132173
Chicago/Turabian StyleBai, Pengfei, Adeel Ahmad, Akhter Rasheed, Saqib Hussain, Huo Tang, and Saima Noor. 2025. "A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions" Mathematics 13, no. 13: 2173. https://doi.org/10.3390/math13132173
APA StyleBai, P., Ahmad, A., Rasheed, A., Hussain, S., Tang, H., & Noor, S. (2025). A Study on q-Starlike Functions Connected with q-Extension of Hyperbolic Secant and Janowski Functions. Mathematics, 13(13), 2173. https://doi.org/10.3390/math13132173