On Estimates of Functions in Norms of Weighted Spaces in the Neighborhoods of Singularity Points
Abstract
1. Introduction
2. Theorems on Estimating the Norm of a Function in the Neighborhood of a Singularity Point
3. On the Estimate of the Norm of a Function in the Boundary Strip
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ciarlet, P. The Finite Element Method for Elliptic Problems; SIAM: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Strang, G.; Fix, G.J. An Analysis of the Finite Element Method; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Samarskii, A.A.; Lazarov, R.D.; Makarov, V.L. Finite-Difference Schemes for Differential Equations with Generalized Solutions; Vysshaya Shkola: Moscow, Russia, 1987. [Google Scholar]
- Rukavishnikov, V.A. Methods of numerical analysis for boundary value problems with strong singularity. Russ. J. Numer. Anal. Math. Model. 2009, 24, 565–590. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikova, H.I. The finite element method for a boundary value problem with strong singularity. J. Comput. Appl. Math. 2010, 234, 2870–2882. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Mosolapov, A.O. New numerical method for solving time-harmonic Maxwell equations with strong singularity. J. Comput. Phys. 2012, 231, 2438–2448. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, G.R. Smoothed finite element methods (S-FEM): An overview and recent developments. Arch. Comput. Methods Eng. 2018, 25, 397–435. [Google Scholar] [CrossRef]
- Nicaise, S.; Renard, Y.; Chhine, E. Optimal convergence analysis for the extended finite element method. Int. J. Numer. Methods Eng. 2011, 86, 528–548. [Google Scholar] [CrossRef]
- Sukumar, N.; Dolbow, J.E.; Moës, N. Extended finite element method in computational fracture mechanics: A retrospective examination. Int. J. Fract. 2015, 196, 189–206. [Google Scholar] [CrossRef]
- Francis, A.; Ortiz-Bernardin, A.; Bordas, S.; Natarajan, S. Linear smoothed polygonal and polyhedral finite elements. Int. J. Numer. Meth. Eng. 2016, 109, 1263–1288. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, L. A field-enriched finite element method for crack propagation in fiber-reinforced composite lamina without remeshing. Compos. Struct. 2021, 270, 114074. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X. A field-enriched finite element method for simulating the failure process of rocks with different defects. Comput. Struct. 2021, 250, 106539. [Google Scholar] [CrossRef]
- Vu-Bac, N.; Nguyen-Xuan, H.; Chen, L.; Bordas, S.; Kerfriden, P.; Simpson, R.N.; Liu, G.R.; Rabczuk, T. A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis. Comput. Model. Eng. Sci. 2011, 73, 331–356. [Google Scholar] [CrossRef]
- Nguyen-Xuan, H.; Liu, G.; Bordas, S.P.A.; Natarajan, S.; Rabczuk, T. An adaptive singular es-fem for mechanics problems with singular field of arbitrary order. Comput. Methods Appl. Mech. Eng. 2013, 253, 252–273. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, G.R.; Jiang, C.; Dong, X.W.; Chen, H.D.; Bao, Y.; Jiang, Y. An effective fracture analysis method based on the virtual crack closure-integral technique implemented in cs-fem. Appl. Math. Model. 2016, 40, 3783–3800. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q.; Liu, G.; Wang, Y.; Sun, J. Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. Int. J. Mech. Sci. 2016, 115–116, 123–134. [Google Scholar] [CrossRef]
- Bhowmick, S.; Liu, G. On singular es-fem for fracture analysis of solids with singular stress fields of arbitrary order. Eng. Anal. Bound. Elem. 2018, 86, 64–81. [Google Scholar] [CrossRef]
- Belytschko, T.; Gu, L.; Lu, Y. Fracture and crack growth by element free Galerkin methods. Model. Simul. Mater. Sci. Eng. 1994, 2, 519–534. [Google Scholar] [CrossRef]
- Nguyen, N.; Bui, T.; Zhang, C.; Truong, T. Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method. Eng. Anal. Bound. Elem. 2014, 44, 87–97. [Google Scholar] [CrossRef]
- Khosravifard, A.; Hematiyan, M.; Bui, T.; Do, T. Accurate and efficient analysis of stationary and propagating crack problems by meshless methods. Theor. Appl. Fract. Mech. 2017, 87, 21–34. [Google Scholar] [CrossRef]
- Surenran, M.; Natarajan, S.; Bordas, S.; Palani, G. Linear smoothed extended finite element method. Int. J. Numer. Methods Eng. 2017, 112, 1733–1749. [Google Scholar] [CrossRef]
- Racz, D.; Bui, T.Q. Novel adaptive meshfree integration techniques in meshless methods. Int. J. Numer. Methods Eng. 2012, 90, 1414–1434. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A. Weighted FEM for two-dimensional elasticity problem with corner singularity. In Numerical Mathematics and Advanced Applications ENUMATH 2015; Lecture Notes in Computational Science and Engineering; Springer: Cham, Switzerland, 2016; Volume 112, pp. 411–419. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A. Body of optimal parameters in the weighted finite element method for the crack problem. J. Appl. Comput. Mech. 2021, 7, 2159–2170. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Mosolapov, A.O.; Rukavishnikova, E.I. Weighted finite element method for elasticity problem with a crack. Comput. Struct. 2021, 243, 106400. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikova, E.I. Weighted finite element method and body of optimal parameters for elasticity problem with singularity. CAMWA 2023, 151, 408–417. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikov, A.V. Weighted finite element method for the Stokes problem with corner singularity. J. Comput. Appl. Math. 2018, 341, 144–156. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikov, A.V. Theoretical analysis and construction of numerical method for solving the Navier-Stokes equations in rotation form with corner singularity. J. Comput. Appl. Math. 2023, 429, 115218. [Google Scholar] [CrossRef]
- Rukavishnikov, A.V.; Rukavishnikov, V.A. New numerical approach for the steady-state Navier-Stokes equations with corner singularity. Int. J. Comput. Methods 2022, 19, 2250012. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Kuznetsova, E.V. The Rν-generalized solution of a boundary value problem with a singularity belongs to the space (Ω, δ). Diff. Equat. 2009, 45, 913–917. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikova, E.I. Existence and uniqueness of an Rν-generalized solution of the Dirichlet problem for the Lamé system with a corner singularity. Diff. Equat. 2019, 55, 832–840. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikova, E.I. On the Dirichlet problem with corner singularity. Mathematics 2020, 8, 1870. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A.; Rukavishnikov, A.V. On the existence and uniqueness of an Rν-generalized solution to the Stokes problem with corner singularity. Mathematics 2022, 10, 1752. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A. On the differential properties of the Rν-generalized solution of the Dirichlet problem. Dokl. Akad. Nauk SSSR 1989, 309, 1318–1320. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals. I. Trans. Am. Math. Soc. 1928, 27, 565–606. [Google Scholar] [CrossRef]
- Clarkson, J.A. Uniformly convex spaces. Math. Zett. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Rukavishnikov, V.A. The Dirichlet problem for a second-order elliptic equation with non-coordinated degeneration of the input data. Diff. Equat. 1996, 32, 406–412. [Google Scholar]
- Rukavishnikov, V.A.; Rukavishnikova, E.I. Error estimate FEM for the Nikol’skij-Lizorkin problem with degeneracy. J. Comput. Appl. Math. 2022, 403, 113841. [Google Scholar] [CrossRef]
- Oganesyan, L.A.; Rukhovets, L.A. Variational-Difference Methods for Solving Elliptic Equations; Publishing House of the Academy of Sciences of the Armenian SSR: Yerevan, Armenia, 1979. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rukavishnikov, V.A.; Rukavishnikova, E.I. On Estimates of Functions in Norms of Weighted Spaces in the Neighborhoods of Singularity Points. Mathematics 2025, 13, 2135. https://doi.org/10.3390/math13132135
Rukavishnikov VA, Rukavishnikova EI. On Estimates of Functions in Norms of Weighted Spaces in the Neighborhoods of Singularity Points. Mathematics. 2025; 13(13):2135. https://doi.org/10.3390/math13132135
Chicago/Turabian StyleRukavishnikov, Viktor A., and Elena I. Rukavishnikova. 2025. "On Estimates of Functions in Norms of Weighted Spaces in the Neighborhoods of Singularity Points" Mathematics 13, no. 13: 2135. https://doi.org/10.3390/math13132135
APA StyleRukavishnikov, V. A., & Rukavishnikova, E. I. (2025). On Estimates of Functions in Norms of Weighted Spaces in the Neighborhoods of Singularity Points. Mathematics, 13(13), 2135. https://doi.org/10.3390/math13132135