Applications of N-Tupled Fixed Points in Partially Ordered Metric Spaces for Solving Systems of Nonlinear Matrix Equations
Abstract
1. Introduction and Preliminaries
2. Results
2.1. Fixed Points for Weak Monotone Maps
- if then
- if then .
- (i)
- f is continuous.
- (ii)
- For any convergent sequence, .
- If , then .
- If , then .
- (I)
- A priori error estimate .
- (II)
- A posteriori error estimate .
- (III)
- The rate of convergence .
- If , then .
- If , then .
2.2. N-Tupled Fixed Points for Maps in Partially Ordered Metric Spaces
- (i)
- , are continuous maps.
- (ii)
- for any convergent sequence , .
- If then .
- If then .
- , i.e.,
- , i.e.,
- (I)
- A priori error estimate
- (II)
- A posteriori error estimate
- (III)
- The rate of convergence
- if then ;
- if then .
- (i)
- , for ;
- (ii)
- If for each to of components , that are not comparable, there is , comparable with both of them;
3. Applications
3.1. Applications of Theorems 2 and 3 in the Investigations of Coupled Fixed Points
- (i)
- F and G are continuous maps.
- (ii)
- For any convergent sequence , .
- If , then .
- If , then .
- and .
- and .
- If , then ;
- If , then .
- (i)
- F and G are continuous maps.
- (ii)
- For any convergent sequence , .
- If , then .
- If , then .
- and .
- and .
- If , then .
- If , then .
3.2. Applications of Theorems 2 and 3 in the Investigations of Tripled Fixed Points
- (i)
- , are continuous maps.
- (ii)
- For any convergent sequence , .
- If , then .
- If , then .
- , , and .
- , , and .
3.3. Application of Theorem 3
- Hermitian if it satisfies ;
- Skew–Hermitian if ;
- Unitary if (where I is the identity matrix);
- Normal if .
- (i)
- , for
- (ii)
- there exists , so that
- (iii)
- (I)
- A priori error estimate
- (II)
- A posteriori error estimate
- (III)
- The rate of convergence
4. Illustrative Examples
Application of Theorem 8
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrieiev, Y.; Breslavsky, D.; Shabanov, H.; Naumenko, K.; Altenbach, H. Solution to the Inverse Problem of the Angular Manipulator Kinematics with Six Degrees of Freedom. Appl. Sci. 2025, 15, 5. [Google Scholar] [CrossRef]
- Azizpour, S.; Behzadipour, H.; Sadeghi, S.H.H. An efficient method for output prediction of a surface eddy current probe in the presence of an axial fatigue crack in a conducting cylindrical rod. NDT E Int. 2025, 153, 103354. [Google Scholar] [CrossRef]
- Byun, S.-S.; Yang, R. Double obstacle problems of nonlinear elliptic equations with log-BMO matrix weights. Nonlinearity 2025, 38, 4. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, X.; Li, J.; Zhang, G.; Sun, X. Acoustic resonance in annular cascades in the presence of background mean flow. J. Fluid Mech. 2025, 1006, A7. [Google Scholar] [CrossRef]
- Meleshko, Y.; Yakymenko, M.; Mikhav, V.; Shulika, Y.; Davydov, V. Development a set of mathematical models for anomaly detection in high-load complex computer systems. East.-Eur. J. Enterp. Technol. 2024, 6, 14–25. [Google Scholar] [CrossRef]
- Zeng, M.-L.; Stoll, M. A splitting-based KPIK method for eddy current optimal control problems in an all-at-once approach. Comput. Math. Appl. 2025, 190, 1–15. [Google Scholar] [CrossRef]
- Chen, H.; Huang, P. An sor implicit iterative algorithm for coupled riccati matrix equations in Itô stochastic systems with markovian jump. J. Ind. Manag. Optim. 2024, 21, 380–397. [Google Scholar] [CrossRef]
- Lande, M.S.; Lande, S. Application of hybrid analytic hierarchy process and graph theoretic approach for analysis of barriers of high setup time. TQM J. 2025, in press. [Google Scholar] [CrossRef]
- Luo, Y. Theoretical Foundation of the Land Carbon Cycle and Matrix Approach. In Land Carbon Cycle Modeling: Matrix Approach, Data Assimilation, Ecological Forecasting, and Machine Learning, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 3–10. [Google Scholar] [CrossRef]
- Matt Majic, M.; Stén, J.C.-E. Electrostatic boundary problems and T-matrix for the dielectric half-spheroid. J. Quant. Spectrosc. Radiat. Transf. 2025, 332, 109289. [Google Scholar] [CrossRef]
- Shi, Z.; Lu, X. Coupled Carbon-Nitrogen Matrix Models. In Land Carbon Cycle Modeling: Matrix Approach, Data Assimilation, Ecological Forecasting, and Machine Learning, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 34–44. [Google Scholar] [CrossRef]
- Anderson, W.N.; Morley, T.D.; Trapp, G.E. Positive Solutions to X=A-BX−1B*. Linear Algebra Appl. 1990, 134, 53–62. [Google Scholar] [CrossRef]
- Engwerda, J.C. On the Existence of a Positive Definite Solution of the Matrix Equation X+ATX−1A=I. Linear Algebra Appl. 1993, 194, 91–108. [Google Scholar] [CrossRef]
- Zhan, X. Computing the Extremal Positive Definite Solution of a Matrix Equation. SIAM J. Sci. Comput. 1996, 247, 337–345. [Google Scholar] [CrossRef]
- Ran, A.; Reurings, M. A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- Guo, C.; Lancaster, P. Iterative Solution of Two Matrix Equations. Math. Comput. 1999, 68, 1589–1603. [Google Scholar] [CrossRef]
- Ferrante, A.; Levy, B.C. Hermitian Solution of the Equation X=Q+NX−1N*. Linear Algebra Appl. 1996, 247, 359–373. [Google Scholar] [CrossRef]
- Hasanov, V.; El-Sayed, S.M. On the Positive Definite Solutions of Nonlinear Matrix Equation X+A*X−δA=Q. Linear Algebra Appl. 2006, 412, 154–160. [Google Scholar] [CrossRef]
- Hasanov, V. Positive Definite Solutions of the Matrix Equations X±A*X−qA=Q. Linear Algebra Appl. 2005, 404, 166–182. [Google Scholar] [CrossRef]
- Hasanov, V.; Hakkaev, S. Newton’s Method for a Nonlinear Matrix Equation. C. R. Acad. Bulgare Sci. 2015, 68, 973–982. [Google Scholar]
- Nikolova, K.; Hasanov, V. On Inexact Newton Methods for Solving Two Nonlinear Matrix Equations. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2024, 16, 311–327. [Google Scholar] [CrossRef]
- Hasanov, V. Positive Definite Solutions of a Linearly Perturbed Matrix Equation. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2021, 13, 5–19. [Google Scholar] [CrossRef]
- Din, F.U.; Alshaikey, S.; Ishtiaq, U.; Din, M.; Sessa, S. Single and Multi-Valued Ordered-Theoretic Perov Fixed-Point Results for θ-Contraction with Application to Nonlinear System of Matrix Equations. Mathematics 2024, 12, 1302. [Google Scholar] [CrossRef]
- Banach, B. Sur les opérations dan les ensembles abstraits et leurs applications aux integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Turinici, M. Abstract Comparison Principles and Multivariable Gronwall-Bellman Inequalities. J. Math. Anal. Appl. 1986, 117, 100–127. [Google Scholar] [CrossRef]
- Dehaish, B.A.B.; Alharbi, R.K. Common Fixed Points Approximation of Two Generalized Alpha Nonexpansive Mappings in Partially Ordered Uniformly Convex Banach Space. Math. Sci. 2023, 17, 379–385. [Google Scholar] [CrossRef]
- Çevik, C.; Özeken, Ç.C. Coupled Fixed Point Results for New Classes of Functions on Ordered Vector Metric Space. Acta Math. Hungar. 2024, 172, 1–18. [Google Scholar] [CrossRef]
- Majid, N.A.; Jumaili, A.A.; Ng, Z.C.; Lee, S.K. Some Applications of Fixed Point Results for Monotone Multivalued and Integral Type Contractive Mappings. Fixed Point Theory Algorithms Sci. Eng. 2023, 2023, 11. [Google Scholar] [CrossRef]
- Nikam, V.; Shukla, A.K.; Gopal, D. Existence of a System of Fractional Order Differential Equations via Generalized Contraction Mapping in Partially Ordered Banach Space. Int. J. Dyn. Cont. 2024, 12, 125–135. [Google Scholar] [CrossRef]
- Paramasivam, E.; Sampath, S. Tripled Fixed Point Theorems in Partially Ordered ϵ-Chainable Metric Spaces for Uniformly Locally Contractive Mappings. AIP Conf. Proc. 2023, 2852, 020010. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Coupled Fixed Points of Nonlinear Operators with Applications. Nonlinear Anal. 1987, 11, 623–632. [Google Scholar] [CrossRef]
- Bhaskar, T.G.; Lakshmikantham, V. Fixed Point Theorems in Partially Ordered Metric Spaces and Applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
- Berzig, M.; Duan, X.; Samet, B. Positive Definite Solution of the Matrix Equation X=Q − A*X−1A+B*X−1B via Bhaskar-Lakshmikantham Fixed Point Theorem. Math. Sci. 2012, 6, 27. [Google Scholar] [CrossRef]
- Dzhabarova, Y.; Kabaivanov, S.; Ruseva, M.; Zlatanov, B. Existence, Uniqueness and Stability of Market Equilibrium in Oligopoly Markets. Adm. Sci. 2023, 10, 70. [Google Scholar] [CrossRef]
- Zlatanov, B. Coupled Best Proximity Points for Cyclic Contractive Maps and Their Applications. Fixed Point Theory 2021, 22, 431–452. [Google Scholar] [CrossRef]
- Ali, A.; Dinkova, C.; Ilchev, A.; Zlatanov, B. Bhaskar-Lakshmikantham Fixed Point Theorem vs Ran-Reunrings One and Some Possible Generalizations and Applications in Matrix Equations. AIMS Math. 2024, 9, 21890–21917. [Google Scholar] [CrossRef]
- Berinde, V.; Borcut, M. Tripled Fixed Point Theorems for Contractive Type Mappings in Partially Ordered Metric Spaces. Nonlinear Anal. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Postolache, M. Tripled Coincidence Point Theorems for Weak ϕ-Contractions in Partially Ordered Metric Spaces. Fixed Point Theory Appl. 2012, 2012, 44. [Google Scholar] [CrossRef]
- Borcut, M.; Pscurar, M.; Berinde, V. Tripled Fixed Point Theorems for Mixed Monotone Kannan Type Contractive Mappings. J. Appl. Math. 2014, 2014, 120203. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C. Coupled Fixed Point, f-Invariant Set and Fixed Point of n-Order. Ann. Funct. Anal. 2010, 1, 46–56. [Google Scholar] [CrossRef]
- Ali, A.; Dinkova, C.; Kulina, H.; Ilchev, A.; Zlatanov, B. Positive Definite Solution of System of Matrix Equations with X-k and Y-l via Coupled Fixed Point Theorem in Partially Ordered Spaces. Axioms 2025, 14, 123. [Google Scholar] [CrossRef]
- Ali, A.; Dinkova, C.; Kulina, H.; Ilchev, A.; Zlatanov, B. Tripled Fixed Points, Obtained by Ran-Reunrings Theorem for Monotone Maps in Partially Ordered Metric Spaces. Mathematics 2025, 13, 758. [Google Scholar] [CrossRef]
- Shoaib, M.; Sarwar, M.; Aydi, H.; Mukheimer, A. Common N-tupled fixed points via (CLR) property and an application to a system of N-integral equations. Int. J. Math. Comput. Sci. 2019, 14, 915–928. [Google Scholar]
- Rome, B.-E.; Sarwar, M.; Jarad, F. n-Tupled Common Fixed Point Result in Fuzzy b-Metric Spaces. J. Funct. Spaces 2022, 2022, 4097444. [Google Scholar] [CrossRef]
- Nabil, T. Krasnoselskii N-Tupled Fixed Point Theorem with Applications to Fractional Nonlinear Dynamical System. Adv. Math. Phys. 2019, 2019, 6763842. [Google Scholar] [CrossRef]
- Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 2014, 15, 545–558. [Google Scholar]
- Agarwal, R.P.; Karapınar, E.; Roldán-López-de-Hierro, A.F. Some remarks on ‘Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces’. Fixed Point Theory Appl. 2014, 2014, 245. [Google Scholar] [CrossRef]
- Soleimani Rad, G.; Shukla, S.; Rahimi, H. Some relations between n-tuple fixed point and fixed point results. RACSAM 2015, 109, 471–481. [Google Scholar] [CrossRef]
- Fadail, Z.M.; Ahmad, A.G.B.; Soleimani Rad, G.S.; Ozturk, V.; Radenović, S. Some remarks on coupled, tripled and n-tupled coincidence and fixed points theorems in ordered abstract metric spaces. Far East J. Math. Sci. 2015, 97, 809–839. [Google Scholar] [CrossRef]
- Petruşel, A. Fixed Points vs. Coupled Fixed Points. J. Fixed Point Theory Appl. 2018, 20, 150. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G.; Xiao, Y.-B.; Yao, J.-C. Fixed Point Theorems for Generalized Contractions with Applications to Coupled Fixed Point Theory. J. Nonlinear Convex Anal. 2018, 19, 71–81. [Google Scholar]
- Simovici, D.A.; Djeraba, C. Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics; Springer: London, UK, 2008. [Google Scholar] [CrossRef]
- Bianchini, R.M.; Grandolfi, M. Trasformazioni di tipo contrattivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei. Cl. Sci. Fis. Nat. 1968, 45, 212–216. (In Italian) [Google Scholar]
- Zlatanov, B. On a Generalization of Tripled Fixed or Best Proximity Points for a Class of Cyclic Contractive Maps. Filomat 2021, 35, 3015–3031. [Google Scholar] [CrossRef]
- Kabaivanov, S.; Zlatanov, B. A variational principle, coupled fixed points and market equilibrium. Nonlinear Anal. Model. Control 2021, 26, 169–185. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics; Springer: New York, NY, USA, 1997. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications, I—Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapınar, E. Multidimensional Fixed-Point Theorems in Partially Ordered Complete Partial Metric Spaces under (ψ,ϕ)-Contractivity Conditions. Abstr. Appl. Anal. 2013, 2013, 634371. [Google Scholar] [CrossRef]
- Nieto, J.J.; Rodríguez-López, R. Contractive Mapping Theorems in Partially Ordered Sets and Applications to Ordinary Differential Equations. Order 2005, 22, 223–239. [Google Scholar] [CrossRef]
- Erfanifar, R.; Hajarian, M. Efficient Iterative Schemes Based on Newton’s Method and Fixed-Point Iteration for Solving Nonlinear Matrix Equation Xp=Q±A(X−1+B)−1AT. Eng. Comput. 2023, 40, 2862–2890. [Google Scholar] [CrossRef]
- Sayevand, K.; Erfanifar, H.; Esmaili, H. The Maximal Positive Definite Solution of the Nonlinear Matrix Equation X+A*X−1A+B*X−1B=I. Math. Sci. 2023, 17, 337–350. [Google Scholar] [CrossRef]
- Hasanov, V. On the Matrix Equation X+A*X−1A − B*X−1B=I. Linear Multilinear Algebra 2018, 66, 1783–1798. [Google Scholar] [CrossRef]
- Dzhabarova, Y.; Zlatanov, B. A Note on the Market Equilibrium in Oligopoly with Three Industrial Players. AIP Conf. Proc. 2022, 2449, 070013. [Google Scholar] [CrossRef]
- Ilchev, A.; Ivanova, V.; Kulina, H.; Yaneva, P.; Zlatanov, B. Investigation of Equilibrium in Oligopoly Markets with the Help of Tripled Fixed Points in Banach Spaces. Econometrics 2024, 12, 18. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Hristov, M.; Ilchev, A.; Kulina, H.; Zlatanov, B. Applications of N-Tupled Fixed Points in Partially Ordered Metric Spaces for Solving Systems of Nonlinear Matrix Equations. Mathematics 2025, 13, 2125. https://doi.org/10.3390/math13132125
Ali A, Hristov M, Ilchev A, Kulina H, Zlatanov B. Applications of N-Tupled Fixed Points in Partially Ordered Metric Spaces for Solving Systems of Nonlinear Matrix Equations. Mathematics. 2025; 13(13):2125. https://doi.org/10.3390/math13132125
Chicago/Turabian StyleAli, Aynur, Miroslav Hristov, Atanas Ilchev, Hristina Kulina, and Boyan Zlatanov. 2025. "Applications of N-Tupled Fixed Points in Partially Ordered Metric Spaces for Solving Systems of Nonlinear Matrix Equations" Mathematics 13, no. 13: 2125. https://doi.org/10.3390/math13132125
APA StyleAli, A., Hristov, M., Ilchev, A., Kulina, H., & Zlatanov, B. (2025). Applications of N-Tupled Fixed Points in Partially Ordered Metric Spaces for Solving Systems of Nonlinear Matrix Equations. Mathematics, 13(13), 2125. https://doi.org/10.3390/math13132125