Time Travel with the BiTemporal RDF Model
Abstract
1. Introduction
- The creation of a new bitemporal RDF model that introduces both bitemporal resources and bitemporal relationships as the cornerstones of our model.
- The seamless uniform temporalization of the standard RDF into its bitemporal counterpart. This transformation ensures that every element within the RDF ecosystem becomes inherently bitemporal, marking a fundamental shift in the way temporal data is represented and processed.
- Using time as a reference rather than a fixed attribute enhances flexibility by allowing various time representations, improves consistency by distinguishing time from core attribute values, and ensures compatibility with evolving temporal modeling practices without requiring extensive restructuring.
2. Literature Review
2.1. Time
2.2. RDF
2.3. Temporal RDFs
2.3.1. Graph-Level Embedding
2.3.2. Triple-Level Embedding
2.3.3. Resource-Level Embedding
3. BiTemporal RDF Model
3.1. Modeling Approaches
- Flexibility: Different time representations (symbolic, date-based) can be supported without altering data structure.
- Consistency: Separating time from core attribute values avoids semantic ambiguity and improves data alignment.
- Compatibility: Time reference modeling supports future temporal extensions and is more easily aligned with bitemporal database theory.
3.2. Preliminaries
- @PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
- @PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
- @PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
- @PREFIX bitrdf: <http://example.org/bitrdf-syntax#>
- @PREFIX bitrdfs: <http://example.org/bitrdf-schema#>
- @PREFIX ex: <http://example.org/example#>
- @PREFIX : <http://example.org/temporal-SW#>
- Time: T;
- Time Instants: ;
- Time Intervals: ;
- Valid Time Instants: ;
- Valid Time Intervals: ;
- Transaction Time Instants: ;
- Transaction Time Intervals: ;
- Start of Time: . We also use 0 for simplicity;
- End of Time: . We also use ∞ for simplicity;
- Current Time: . We also use for simplicity;
- Entire Span of Time: . We also use for simplicity;
- Beginning of a time interval: . This represents the lower bound of a time interval , where ;
- Ending of a time interval: . This represents the upper bound of a time interval , where .
- “1998-01-01T10:00:00”\^^xsd:dateTime
3.3. BiTemporal Resources
- Resource rThe resource represents the resource with which the valid time and the transaction time components are associated.
- Valid timeThe interval represents the reference time period during which the resource r is valid in its existence. The interval can also be denoted as , where and represent the beginning and the end of the valid time interval, respectively.
- Transaction timeThe interval represents the reference time period during which the resource is recorded in the knowledge store. The interval can also be denoted as , where and represent the beginning and end of the transaction time interval, respectively.
- The delimiter ‘•’The symbol ‘•’ separates the above three components: r, , and .
3.3.1. Resource Projection Operator
- Resource ProjectionThe projection operator projects a bitemporal resource to its resource component:
- Valid Time ProjectionThe valid time projection operator projects a bitemporal resource to its valid time component:
- Transaction Time ProjectionThe transaction time projection operator projects a bitemporal resource to its transaction time component:
- Bitemporal IRIs, denoted as , are defined as
- Bitemporal blank nodes, denoted as , are defined as
- Bitemporal literals, denoted as , is defined as
3.3.2. Bitemporal Property
3.3.3. Resource Rollback Operator
3.3.4. Bitemporal Data Type
3.4. Bitemporal Triples
3.4.1. BiTemporal Triple Integrity
3.4.2. Triple Projection Operator
3.4.3. Triple Rollback Operator
3.4.4. Bitemporal Underlying Triple
3.5. Bitemporal Graphs
3.5.1. Rollback Operator
3.5.2. Time Slice Operator
3.5.3. Bitemporal RDF Subgraph
- The set of bitemporal triples in is a subset of bitemporal triples in , or
- is the result of , or
- is the result of .
3.5.4. Bitemporal RDF Underlying Graph
3.5.5. Bitemporal RDF Mapping Function
- , where appears as a node in , appears as a node in , and .
- , where appears as a node in , appears as a node in , and .
- , where appears as a node in , appears as a node in , and .
- , where appears as a node in , and appears as a node in .
3.6. Vocabulary, Semantics, and Entailment
bitrdf:type, bitrdf:Property |
bitrdfs:domain, bitrdfs:range, bitrdfs:Class, bitrdfs:subClassOf, bitrdfs:subPropertyOf |
3.6.1. Example 1: Bitemporal Type Propagation
3.6.2. Example 2: Bitemporal Domain-Range Inheritance
3.6.3. Example 3: Bitemporal Subclass Transitivity
3.6.4. Example 4: Temporal Property Transitivity
3.7. Querying Bitemporal Databases
4. Discussion
4.1. Time 0
- :NJ[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :NY[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :CO[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
4.2. Time 1
- :NJ[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :NY[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :CO[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :Tom[1,now][1,now] bitrdf:type[1,now][1,now] :person[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[1,now][1,now] :NJ[0,now][0,now] .
4.3. Time 5
- For the predicate :livesIn[1,now][1,now] in the triple, the valid time interval was adjusted to [1,5). This indicates that the predicate is no longer valid after time 5. Similarly, the transaction time interval changed to [1,5), reflecting that the triple was updated at time 5.
- We then added a bitemporal triple to capture that “Tom lives in NY” at time 5. In this new triple, the predicate :livesIn[5,now][5,now] has a valid time interval of [5,now], signifying its validity from time 5 onwards. Its transaction time interval is also [5,now], showing that this triple was recorded at time 5.
- :NJ[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :NY[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :CO[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :Tom[1,now][1,now] bitrdf:type[1,now][1,now] :person[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[1,5)[1,5) :NJ[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[5,now][5,now] :NY[0,now][0,now] .
4.4. Time 10
- The predicate :livesIn[5,now][5,now] within the triple saw its valid time interval updated to [5,10), signifying that the predicate is no longer valid past time 10. Concurrently, the transaction time interval shifted to [5,10), indicating the triple’s update at time 10.
- A new bitemporal triple was then introduced to show that “Tom lives in CO” at time 10. In this new triple, the predicate :livesIn[10,now][10,now] has a valid time interval of [10,now], confirming its validity from time 10 onward. Its transaction time interval is also [10,now], denoting that this triple was recorded at time 10.
- :NJ[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :NY[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :CO[0,now][0,now] bitrdf:type[0,now][0,now] :state[0,now][0,now] .
- :Tom[1,now][1,now] bitrdf:type[1,now][1,now] :person[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[1,5)[1,5) :NJ[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[5,10)[5,10) :NY[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[10,now][10,now] :CO[0,now][0,now] .
- :Tom[1,now][1,now] :worksAt[10,now][10,now] :CU[0,now][10,now] .
- :Tom[1,now][1,now] :teaches[10,now][10,now] :DB[0,now][10,now] .
- :Tom[1,now][1,now] :teaches[10,now][10,now] :ML[0,now][10,now] .
- :DB[0,now][10,now] :book[10,now][10,now] :DBText[10,now][10,now] .
- :ML[0,now][10,now] :book[10,now][10,now] :MLText[10,now][10,now] .
- :DBText[10,now][10,now] :price[10,now][10,now] 15[0,now][10,now] .
- :MLText[10,now][10,now] :price[10,now][10,now] 30[0,now][10,now] .
- :Tom[1,now][1,now] :livesIn[1,5)[1,5) :NJ[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[5,10)[5,10) :NY[0,now][0,now] .
- :Tom[1,now][1,now] :livesIn[10,now][10,now] :CO[0,now][0,now] .
5. Conclusions
5.1. Benefits
5.2. Limitations and Future Direction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Berners-Lee, T. Enabling Standards & Technologies—Layer Cake. Available online: https://www.w3.org/2002/Talks/04-sweb/slide12-0.html (accessed on 10 June 2022).
- Berners-Lee, T.; Lassila, O.; Hendler, J. The Semantic Web. Scientific American Magazine, 17 May 2001; pp. 29–37. [Google Scholar]
- Hobbs, J.R.; Pan, F. An Ontology of Time for the Semantic Web. ACM Trans. Asian Lang. Inf. Process. 2004, 3, 66–85. [Google Scholar] [CrossRef]
- McGuinness, D.L.; Van Harmelen, F. OWL web ontology language overview. W3C Recomm. 2004, 10, 10. [Google Scholar]
- Tansel, A.U. Temporal Relational Data Model. IEEE Trans. Knowl. Data Eng. 1997, 9, 464–479. [Google Scholar] [CrossRef]
- Cyganiak, R.; Wood, D.; Lanthaler, M. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation. 2014. Available online: https://www.w3.org/TR/rdf11-concepts/ (accessed on 10 June 2022).
- Schreiber, G.; Raimond, Y. RDF 1.1 Primer. W3C Working Group Note. 2014. Available online: https://www.w3.org/TR/rdf11-primer/ (accessed on 10 June 2018).
- Duerst, M.; Suignard, M. Internationalized Resource Identifiers (IRIs). Available online: https://tools.ietf.org/html/rfc3987 (accessed on 16 June 2018).
- Hayes, P.; McBride, B. RDF Semantics. 2004. Available online: https://www.w3.org/TR/rdf-mt/ (accessed on 16 June 2018).
- Hayes, P.; Patel-Schneider, P.F. RDF 1.1 Semantics. 2014. Available online: https://www.w3.org/TR/rdf11-mt/ (accessed on 10 June 2022).
- Wu, D.; Wang, H.T.; Tansel, A.U. A survey for managing temporal data in RDF. Inf. Syst. 2024, 122, 102368. [Google Scholar] [CrossRef]
- Carroll, J.J.; Bizer, C.; Hayes, P.; Stickler, P. Named Graphs. Web Semant. 2005, 3, 247–267. [Google Scholar] [CrossRef]
- Tappolet, J.; Bernstein, A. Applied Temporal RDF: Efficient Temporal Querying of RDF Data with SPARQL. In Proceedings of the Semantic Web: Research and Applications, Crete, Greece, 31 May–4 June 2009; Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 308–322. [Google Scholar]
- Gutierrez, C.; Hurtado, C.A.; Vaisman, A. Temporal RDF. In Proceedings of the Second European Semantic Web Conference, Crete, Greece, 29 May–1 June 2005; pp. 93–107. [Google Scholar]
- Gutierrez, C.; Hurtado, C.A.; Vaisman, A. Introducing Time into RDF. IEEE Trans. Knowl. Data Eng. 2007, 19, 207–218. [Google Scholar] [CrossRef]
- Dylla, M.; Miliaraki, I.; Theobald, M. A temporal-probabilistic database model for information extraction. Proc. VLDB Endow. 2013, 6, 1810–1821. [Google Scholar] [CrossRef]
- Dylla, M.; Sozio, M.; Theobald, M. Resolving temporal conflicts in inconsistent RDF knowledge bases. In Proceedings of the Datenbanksysteme für Business, Technologie und Web (BTW), Kaiserslautern, Germany, 28 Febuary–4 March 2011. [Google Scholar]
- Schueler, B.; Sizov, S.; Staab, S.; Tran, D.T. Querying for meta knowledge. In Proceedings of the 17th International Conference on World Wide Web, Beijing, China, 21–25 April 2008; pp. 625–634. [Google Scholar]
- Barbieri, D.F.; Braga, D.; Ceri, S.; Della Valle, E.; Grossniklaus, M. C-SPARQL: SPARQL for continuous querying. In Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 20–24 April 2009; pp. 1061–1062. [Google Scholar]
- Barbieri, D.F.; Braga, D.; Ceri, S.; VALLE, E.D.; Grossniklaus, M. C-SPARQL: A continuous query language for RDF data streams. Int. J. Semant. Comput. 2010, 4, 3–25. [Google Scholar] [CrossRef]
- Barbieri, D.F.; Braga, D.; Ceri, S.; Valle, E.D.; Grossniklaus, M. Querying RDF streams with C-SPARQL. ACM SIGMOD Rec. 2010, 39, 20–26. [Google Scholar] [CrossRef]
- Chekol, M.W.; Stuckenschmidt, H. Towards Probabilistic Bitemporal Knowledge Graphs. In Proceedings of the Companion Proceedings of the Web Conference 2018, Lyon, France, 23–27 April 2018; WWW ’18. pp. 1757–1762. [Google Scholar] [CrossRef]
- Grandi, F. Multi-temporal RDF Ontology Versioning. In Proceedings of the IWOD@ ISWC, Washington, DC, USA, 25–29 October 2009. [Google Scholar]
- Nguyen, V.; Bodenreider, O.; Sheth, A. Don’t Like RDF Reification? Making Statements About Statements Using Singleton Property. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Republic of Korea, 7–11 April 2014; WWW ’14. pp. 759–770. [Google Scholar] [CrossRef]
- Udrea, O.; Recupero, D.R.; Subrahmanian, V.S. Annotated RDF. ACM Trans. Comput. Log. 2010, 11, 10:1–10:41. [Google Scholar] [CrossRef]
- McBride, B.; Butler, M. Representing and Querying Historical Information in RDF with Application to E-Discovery; HP Laboratories Technical Report, HPL-2009-261; HPL: Palo Alto, CA, USA, 2009. [Google Scholar]
- Gergatsoulis, M.; Lilis, P. Multidimensional RDF. Lect. Notes Comput. Sci. 2005, 3761, 1188. [Google Scholar]
- Welty, C.; Fikes, R.; Makarios, S. A reusable ontology for fluents in OWL. In Proceedings of the FOIS, Baltimore, MD, USA, 9–11 November 2006; pp. 226–236. [Google Scholar]
- Hartig, O.; Thompson, B. Foundations of an Alternative Approach to Reification in RDF. arXiv 2014, arXiv:1406.3399. [Google Scholar]
- Hartig, O. Reconciliation of RDF* and Property Graphs. arXiv 2014, arXiv:1409.3288. [Google Scholar]
- Hartig, O. Foundations of RDF* and SPARQL* : (An Alternative Approach to Statement-Level Metadata in RDF). In Proceedings of the 11th Alberto Mendelzon International Workshop on Foundations of Data Management and the Web 2017, Montevideo, Uruguay, 7–9 June 2017; CEUR Workshop Proceedings. Volume 1912. [Google Scholar]
- Rodrıguez, A.; McGrath, R.; Liu, Y.; Myers, J.; Urbana-Champaign, I. Semantic management of streaming data. Proc. Semant. Sens. Netw. 2009, 80, 80–95. [Google Scholar]
- Noy, N.; Rector, A.; Hayes, P.; Welty, C. Defining N-ary Relations on the Semantic Web. W3C Work. Group Note 2006, 12, 4. [Google Scholar]
- Touhami, R.; Buche, P.; Dibie-Barthélemy, J.; Ibănescu, L. An Ontological and Terminological Resource for n-ary Relation Annotation in Web Data Tables. In Proceedings of the on the Move to Meaningful Internet Systems: OTM 2011, Crete, Greece, 17–21 October 2011; Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.C., Damiani, E., Schmidt, D.C., White, J., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 662–679. [Google Scholar]
- Bykau, S.; Mylopoulos, J.; Rizzolo, F.; Velegrakis, Y. On modeling and querying concept evolution. J. Data Semant. 2012, 1, 31–55. [Google Scholar] [CrossRef]
- Rizzolo, F.; Velegrakis, Y.; Mylopoulos, J.; Bykau, S. Modeling concept evolution: A historical perspective. In Proceedings of the Conceptual Modeling-ER 2009: 28th International Conference on Conceptual Modeling, Gramado, Brazil, 9–12 November 2009; Proceedings 28. Springer: Berlin/Heidelberg, Germany, 2009; pp. 331–345. [Google Scholar]
- Xu, Z. A Temporal RDF(S) Construction Method Based on Temporal Relational Database. In Proceedings of the IEEE 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 15–17 April 2022; pp. 449–457. [Google Scholar]
- Wang, H.T. Valid Time RDF. PhD Thesis, The Graduate Center, City University of New York, New York, NY, USA, 2020. [Google Scholar]
- Debrouvier, A.; Parodi, E.; Perazzo, M.; Soliani, V.; Vaisman, A. A model and query language for temporal graph databases. VLDB J. 2021, 30, 825–858. [Google Scholar] [CrossRef]
- Milea, V.; Frasincar, F.; Kaymak, U. tOWL: A temporal web ontology language. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2011, 42, 268–281. [Google Scholar] [CrossRef]
- Tansel, A.U. Adding time dimension to relational model and extending relational algebra. Inf. Syst. 1986, 11, 343–355. [Google Scholar] [CrossRef]
- Tansel, A.U. Efficient Management of Temporal Knowledge. U.S. Patent 10055450, 21 August 2018. [Google Scholar]
- Wu, D. BiTRDF: Extending RDF for Bitemporal Data. PhD Thesis, The Graduate Center, City University of New York, New York, NY, USA, 2022. [Google Scholar]
- Allen, J.F. Maintaining knowledge about temporal intervals. Commun. ACM 1983, 39, 832–843. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, W.; Wang, G. A Bitemporal RDF Index Based on Skip List. Intell. Data Anal. 2024, 28, 1579–1599. [Google Scholar] [CrossRef]
- Vrandečić, D.; Krötzsch, M. Wikidata: A free collaborative knowledgebase. Commun. ACM 2014, 57, 78–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tansel, A.U.; Wu, D.; Wang, H.-T. Time Travel with the BiTemporal RDF Model. Mathematics 2025, 13, 2109. https://doi.org/10.3390/math13132109
Tansel AU, Wu D, Wang H-T. Time Travel with the BiTemporal RDF Model. Mathematics. 2025; 13(13):2109. https://doi.org/10.3390/math13132109
Chicago/Turabian StyleTansel, Abdullah Uz, Di Wu, and Hsien-Tseng Wang. 2025. "Time Travel with the BiTemporal RDF Model" Mathematics 13, no. 13: 2109. https://doi.org/10.3390/math13132109
APA StyleTansel, A. U., Wu, D., & Wang, H.-T. (2025). Time Travel with the BiTemporal RDF Model. Mathematics, 13(13), 2109. https://doi.org/10.3390/math13132109