Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System
Abstract
1. Introduction
2. The Optimal Auxiliary Functions Method (OAFM)
2.1. Stepwise OAFM
2.2. Semi-Analytical Solutions via the OAFM
3. Numerical Results and Validation
The OAFM via the Iterative Method
4. Conclusions
- The OAFM solutions were written in effective form by arbitrary choice of the linear operator L and the auxiliary functions ;
- Dependence of the auxiliary functions on the finite number of the unknown parameters were optimally computed to obtain the absolute values between the semi-analytical solutions and numerical ones smaller than one, which assured convergence control;
- The OAFM solutions were obtained for arbitrary values of the physical parameters a, b, c, d, namely for . In two subcases, a was closer to 0, and a approached ;
- The OAFM is more efficient when compared with the iterative method by means of solutions, namely the iterative method is validated just when the exact solution is known.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Rucklidge, A.M. Chaos in models of double convection. J. Fluid Mech. 1992, 237, 209–229. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, G.; Zhou, H.; Chen, J. A new M×N-grid double-scroll chaotic attractors from Rucklidge chaotic system. Optik 2017, 136, 27–35. [Google Scholar] [CrossRef]
- Lima, M.F.S.; Llibre, J.; Valls, C. Integrability of the Rucklidge system. Nonlinear Dyn. 2014, 77, 1441–1453. [Google Scholar] [CrossRef]
- Hosen, M.Z.; Nurujjaman, M.; Tahura, S.; Ahmed, P. Controlling of chaotic Rucklidge system with dynamical behaviors. Seybold Report. 2023, 18, 849–865. [Google Scholar] [CrossRef]
- Vignesh, D.; He, S.; Banerjee, S. Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization. Appl. Math. Comput. 2023, 455, 128111. [Google Scholar] [CrossRef]
- Kocamaz, U.E.; Uyaroglu, Y. Controlling Rucklidge chaotic system with a single controller using linear feedback and passive control methods. Nonlinear Dyn. 2014, 75, 63–72. [Google Scholar] [CrossRef]
- Dong, C.; Lian, J.; Qi, J.; Hantao, L. Symbolic Encoding of Periodic Orbits and Chaos in the Rucklidge System. Complexity 2021, 2021, 4465151. [Google Scholar] [CrossRef]
- Naveen, S.; Parthiban, V. Application of Newton’s polynomial interpolation scheme for variable order fractional derivative with power-law kernel. Sci. Rep. 2024, 14, 16090. [Google Scholar] [CrossRef] [PubMed]
- Tarammim, A.; Akter, M. A Comparative Study of Synchronization Methods of Rucklidge Chaotic Systems with Design of Active Control and Backstepping Methods. Int. J. Mod. Theory Appl. 2022, 11, 31–51. [Google Scholar] [CrossRef]
- Wang, X. Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system. Chaos Solitons Fractals 2009, 42, 2208–2217. [Google Scholar] [CrossRef]
- Marinca, V.; Herisanu, N. Approximate analytical solutions to Jerk equation. In Springer Proceedings in Mathematics & Statistics, Proceedings of the Dynamical Systems: Theoretical and Experimental Analysis, Lodz, Poland, 7–10 December 2015; Springer: Cham, Switzerland, 2016; Volume 182, pp. 169–176. [Google Scholar]
- Marinca, V.; Ene, R.-D.; Marinca, V.B. Optimal Auxiliary Functions Method for viscous flow due to a stretching surface with partial slip. Open Eng. 2018, 8, 261–274. [Google Scholar] [CrossRef]
- Ene, R.-D.; Pop, N.; Lapadat, M.; Dungan, L. Approximate closed-form solutions for the Maxwell-Bloch equations via the Optimal Homotopy Asymptotic Method. Mathematics 2022, 10, 4118. [Google Scholar] [CrossRef]
- Farooq, M.; Rahman, A.U.; Khan, A.; Ozsahin, I.; Uzun, B.; Ahmad, H. Comparative analysis of magnetohydrodynamic inclined Poiseulle flow of couple stress fluids. J. Comput. Appl. Mech. 2025, 56, 536–560. [Google Scholar]
- Daftardar-Gejji, V.; Jafari, H. An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 2006, 316, 753–763. [Google Scholar] [CrossRef]
t | |||
---|---|---|---|
0 | 0.25 | 0.25 | 2.8421 |
6 | −0.0282696503 | −0.0283332544 | 6.3604 |
12 | 0.0875446140 | 0.0876729147 | 1.2830 |
18 | −0.0080246353 | −0.0081568880 | 1.3225 |
24 | −0.0258419393 | −0.0257718485 | 7.0090 |
30 | 0.0615665579 | 0.0615581458 | 8.4121 |
36 | −0.0546747900 | −0.0547310459 | 5.6255 |
42 | 0.0303556825 | 0.0303595022 | 3.8197 |
48 | −0.0091051729 | −0.0090233939 | 8.1779 |
54 | −0.0064377130 | −0.0064017731 | 3.5939 |
60 | 0.0182054744 | 0.0180646680 | 1.4080 |
t | |||
---|---|---|---|
0 | 0.25 | 0.25 | 1.1102 |
2 | −0.2310125718 | −0.2309915725 | 2.0999 |
4 | −0.1270907520 | −0.1271941460 | 1.0339 |
6 | −0.0495725523 | −0.0495150146 | 5.7537 |
8 | −0.0186868834 | −0.0187247943 | 3.7910 |
10 | −0.0073059431 | −0.0073250783 | 1.9135 |
12 | −0.0031036310 | −0.0030636909 | 3.9940 |
14 | −0.0015389657 | −0.0015240290 | 1.4936 |
16 | −0.0009541478 | −0.0009876586 | 3.3510 |
18 | −0.0007359285 | −0.0007665108 | 3.0582 |
20 | −0.0006552978 | −0.0006176353 | 3.7662 |
t | |||
---|---|---|---|
0 | 0.5 | 0.5 | 0.5 |
0.35 | 0.5374226057 | 0.5374486596 | 0.5374226145 |
0.7 | 0.5438221770 | 0.5438941587 | 0.5438231287 |
1.05 | 0.5293352623 | 0.5294043272 | 0.5293606734 |
1.4 | 0.5017292155 | 0.5017640253 | 0.5019829926 |
1.75 | 0.4667123295 | 0.4667257564 | 0.4681816626 |
2.1 | 0.4283693903 | 0.4283893815 | 0.4344330377 |
2.45 | 0.3895448972 | 0.3895842146 | 0.4096806911 |
2.8 | 0.3521465461 | 0.3521957668 | 0.4109737727 |
3.15 | 0.3173816854 | 0.3174212857 | 0.4807833563 |
3.5 | 0.2859444082 | 0.2859602449 | 0.7463073937 |
t | |||
---|---|---|---|
0 | 1.5 | 1.5 | 1.5 |
0.35 | 1.1377980798 | 1.1378008156 | 1.1377980375 |
0.7 | 0.8888423764 | 0.8888612686 | 0.8888369606 |
1.05 | 0.7116898089 | 0.7117270141 | 0.7115520959 |
1.4 | 0.5800303146 | 0.5800722098 | 0.5786930777 |
1.75 | 0.4778418539 | 0.4778775637 | 0.4702214720 |
2.1 | 0.3956568187 | 0.3956859302 | 0.3646682873 |
2.45 | 0.3279561047 | 0.3279838028 | 0.2279547171 |
2.8 | 0.2714770533 | 0.2715066870 | −0.0023675260 |
3.15 | 0.2241809182 | 0.2242108232 | −0.4447085587 |
3.5 | 0.1846601213 | 0.1846861393 | −1.3396706314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ene, R.-D.; Pop, N.; Badarau, R. Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System. Mathematics 2025, 13, 2052. https://doi.org/10.3390/math13132052
Ene R-D, Pop N, Badarau R. Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System. Mathematics. 2025; 13(13):2052. https://doi.org/10.3390/math13132052
Chicago/Turabian StyleEne, Remus-Daniel, Nicolina Pop, and Rodica Badarau. 2025. "Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System" Mathematics 13, no. 13: 2052. https://doi.org/10.3390/math13132052
APA StyleEne, R.-D., Pop, N., & Badarau, R. (2025). Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System. Mathematics, 13(13), 2052. https://doi.org/10.3390/math13132052