Generalized Modified Unstable Nonlinear Schrödinger’s Equation: Optical Solitons and Modulation Instability
Abstract
:1. Introduction
2. The Mathematical Analysis
2.1. The Main Procedure of the Methods
2.1.1. The EDAM
- 1.
- Given a nonlinear PDE
- 2.
- 3.
- The EDAM assumes the solution of Equation (7) to be
- 4.
- Substituting Equation (8) into Equation (7) and using the different solutions of Equation (9) that correspond to various values of , , and , we get various solutions for the nonlinear PDE in Equation (5). About thirty-seven solutions , satisfying the auxiliary Equation (9) and corresponding to different values of , , and , were reported in [39]. Replacing Equation (8) into Equation (7) along with Equation (9) and equating the coefficients of to zero, we obtain a system of algebraic equations that can be solved using Maple for the unknown constants (), , , and . Finally, we use the unknown values to obtain various solutions for Equation (7) and, by extension, Equation (5).
2.1.2. The GREM
- 3.
- 4.
- Substituting Equation (10) into Equation (7), using Equation (11) and equating the coefficients of to zero, we obtain a system of nonlinear algebraic equations that may be solved using Maple to obtain the unknown constants and . Substituting the unknown constants back into the solution form in Equation (10), we find solutions to the nonlinear PDE (5).
2.2. The Application of the Methods
2.2.1. The Application of the EDAM
- Case I: For and , we have
- Case II: For and , we have
- Case III: If and in Equation (9), the algebraic system gives the following values:
- Case IV: We have the following solutions for
- Case V: If and in Equation (9), the algebraic system gives the following solutions:
- Case VI: If and in Equation (9), the algebraic system provides the following solutions:
2.2.2. The Application of the GREM
- CASE I: For and (or, ), we have the hyperbolic solutions as follows:
- CASE II: For and (or, ), we have the trignometric solutions as follows:
3. Results and Discussion
3.1. Graphical Results
3.2. The Bifurcation Analysis
- 1.
- If , then is a center point.
- 2.
- If , then is a degenerate point.
- 3.
- If , then is a saddle point.
3.3. The Chaotic Analysis
3.4. The Modulation Instability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tao, G.; Sabi’u, J.; Nestor, S.; El-Shiekh, R.M.; Akinyemi, L.; Az-Zo’bi, E.; Betchewe, G. Dynamics of a new class of solitary wave structures in telecommunications systems via a (2+1)-dimensional nonlinear transmission line. Mod. Phys. Lett. B 2022, 36, 2150596. [Google Scholar] [CrossRef]
- Alhami, R.; Alquran, M. Extracted different types of optical lumps and breathers to the new generalized stochastic potential-KdV equation via using the Cole-Hopf transformation and Hirota bilinear method. Opt. Quantum Electron. 2022, 54, 553. [Google Scholar] [CrossRef]
- Li, M.; Xu, T.; Wang, L. Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 2015, 80, 1451–1461. [Google Scholar] [CrossRef]
- Malingam, P.; Wongsasinchai, P.; Sirisubtawee, S. Explicit exact solutions and bifurcation analysis for the mZK equation with truncated M-fractional derivatives utilizing two reliable methods. Open Phys. 2025, 23, 20240117. [Google Scholar] [CrossRef]
- Tantawy, M.; Abdel-Gawad, H.I.; Thamareerat, N.; Sungnul, S.; Sirisubtawee, S. Oceanic water waves via double and single convex-concave solitons in the generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt equations with a novel truncated MM-derivative. Phys. Scr. 2025, 100, 3. [Google Scholar] [CrossRef]
- Sinha, D.; Ghosh, P.K. Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time-symmetric potential. Phy. Lett. A 2017, 381, 124–128. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D. Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrödinger equation and its stability. Results Phys. 2017, 7, 43–48. [Google Scholar] [CrossRef]
- Alquran, M. Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV—Schrödinger equations. Opt. Quantum Electron. 2021, 53, 588. [Google Scholar] [CrossRef]
- Luo, R.; Dhiman, N.; Nazari, F.; Sabi’u, J.; Ahmad, H.; Thounthong, P.; Botmart, T. On new explicit solutions for solving Atangana conformable Biswas-Milovic equation with parabolic law nonlinearity in nonlinear optics. Results Phys. 2022, 40, 105760. [Google Scholar] [CrossRef]
- Sabi’u, J.; Inc, M.; Leta, T.D.; Baleanu, D.; Rezazadeh, H. Dynamical behaviour of the Joseph-Egri equation. Therm. Sci. 2023, 27, 19–28. [Google Scholar] [CrossRef]
- Sabi’u, J.; Das, P.K.; Pashrashid, A.; Rezazadeh, H. Exact solitary optical wave solutions and modulational instability of the truncated Ω-fractional Lakshamanan–Porsezian–Daniel model with Kerr, parabolic, and anti-cubic nonlinear laws. Opt. Quantum Electron. 2022, 54, 269. [Google Scholar] [CrossRef]
- Zakharov, V.E.E.; Manakov, S.V. On the complete integrability of a nonlinear Schrödinger equation. Theor. Math. Phys. 1974, 19, 551–559. [Google Scholar] [CrossRef]
- Pedlosky, J. Finite-amplitude baroclinic waves. J. Atmos. Sci. 1970, 27, 15–30. [Google Scholar] [CrossRef]
- Pawlik, M.; Rowlands, G. The propagation of solitary waves in piezoelectric semiconductors. J. Phys. Solid State Phys. 1975, 8, 1189. [Google Scholar] [CrossRef]
- Wadati, M.; Segur, H. A new Hamiltonian amplitude equation governing modulated wave instabilities. J. Phys. Soc. Jpn. 1992, 61, 1187–1193. [Google Scholar] [CrossRef]
- Shiri, B.; Guang, Y.; Baleanu, D. Inverse problems for discrete Hermite nabla difference equation. Appl. Math. Sci. Eng. 2025, 33, 2431000. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.; Arshad, M. Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik 2017, 140, 136–144. [Google Scholar] [CrossRef]
- Hosseini, K.; Kumar, D.; Kaplan, M.; Bejarbaneh, E.Y. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations. Commun. Theor. Phys. 2017, 68, 761. [Google Scholar] [CrossRef]
- Sarwar, A.; Gang, T.; Arshad, M.; Ahmed, I.; Ahmad, M.O. Abundant solitary wave solutions for space-time fractional unstable nonlinear Schrödinger equations and their applications. Ain Shams Eng. J. 2023, 14, 101839. [Google Scholar] [CrossRef]
- Lu, D.; Seadawy, A.R.; Arshad, M. Bright-dark solitary wave and elliptic function solutions of unstable nonlinear Schrödinger equation and their applications. Opt. Quantum Electron. 2018, 50, 23. [Google Scholar] [CrossRef]
- Li, Y.; Lu, D.; Arshad, M.; Xu, X. New exact traveling wave solutions of the unstable nonlinear Schrödinger equations and their applications. Optik 2021, 226, 165386. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Optical soliton solutions of unstable nonlinear Schrödinger dynamical equation and stability analysis with applications. Optik 2018, 157, 597–605. [Google Scholar] [CrossRef]
- Iqbal, M.; Seadawy, A.R. Instability of modulation wave train and disturbance of time period in slightly stable media for unstable nonlinear Schrödinger dynamical equation. Mod. Phys. Lett. B 2020, 34, 2150010. [Google Scholar] [CrossRef]
- Pandir, Y.; Ekin, A. Dynamics of combined soliton solutions of unstable nonlinear Schrödinger equation with new version of the trial equation method. Chin. J. Phys. 2020, 67, 534–543. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Alsaedi, B.A. Variational principle for generalized unstable and modify unstable nonlinear Schrödinger dynamical equations and their optical soliton solutions. Opt. Quantum Electron. 2024, 56, 844. [Google Scholar] [CrossRef]
- Tala-Tebue, E.; Djoufack, Z.I.; Fendzi-Donfack, E.; Kenfack-Jiotsa, A.; Kofané, T.C. Exact solutions of the unstable nonlinear Schrödinger equation with the new Jacobi elliptic function rational expansion method and the exponential rational function method. Optik 2016, 127, 11124–11130. [Google Scholar] [CrossRef]
- Akinyemi, L.; Akpan, U.; Veeresha, P.; Rezazadeh, H.; İnç, M. Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation. J. Ocean. Eng. Sci. 2022; in press. [Google Scholar]
- Rafiq, M.H.; Raza, N.; Jhangeer, A. Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: A graphical perspective. Opt. Quantum Electron. 2023, 55, 628. [Google Scholar] [CrossRef]
- Badshah, F.; Tariq, K.U.; Aslam, M.; Ma, W.X.; Raza Kazmi, S.M. On the dynamics of the generalized unstable nonlinear Schrödinger equation in dispersive media. Opt. Quantum Electron. 2023, 55, 1084. [Google Scholar] [CrossRef]
- Khatun, M.A.; Arefin, M.A.; Akbar, M.A.; Uddin, M.H. Existence and uniqueness solution analysis of time-fractional unstable nonlinear Schrödinger equation. Results Phys. 2024, 57, 107363. [Google Scholar] [CrossRef]
- Devnath, S.; Khan, K.; Akbar, M.A. Numerous analytical wave solutions to the time-fractional unstable nonlinear Schrödinger equation with beta derivative. Partial. Differ. Equ. Appl. Math. 2023, 8, 100537. [Google Scholar] [CrossRef]
- Rizvi, S.T.; Seadawy, A.R.; Ahmed, S.; Younis, M.; Ali, K. Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solitons Fractals 2021, 151, 111251. [Google Scholar] [CrossRef]
- Tala-Tebue, E.; Seadawy, A.R.; Djoufack, Z.I. The modify unstable nonlinear Schrödinger dynamical equation and its optical soliton solutions. Opt. Quantum Electron. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method. Results Phys. 2024, 59, 107593. [Google Scholar] [CrossRef]
- Arshad, M.; Seadawy, A.R.; Lu, D.; Jun, W. Modulation instability analysis of modify unstable nonlinear Schrödinger dynamical equation and its optical soliton solutions. Results Phys. 2017, 7, 4153–4161. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Iqbal, M.; Lu, D. Construction of soliton solutions of the modify unstable nonlinear Schrödinger dynamical equation in fiber optics. Indian J. Phys. 2020, 94, 823–832. [Google Scholar] [CrossRef]
- Ahmad, J.; Anwar, M.; Mustafa, Z. Nonlinear wave dynamics of fractional unstable and modified unstable nonlinear Schrödinger equations through analytical solutions. J. Opt. 2024, 1–19. [Google Scholar] [CrossRef]
- Akinyemi, L. Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons. Optik 2021, 243, 167477. [Google Scholar] [CrossRef]
- Rezazadeh, H. New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity. Optik 2018, 167, 218–227. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Ren, J. Diversity of optical soliton structures in the spinor Bose–Einstein condensate modeled by three-component Gross–Pitaevskii system. Int. J. Mod. Phys. B 2023, 37, 2350004. [Google Scholar] [CrossRef]
- Hosseini, K.; Hinçal, E.; Ilie, M. Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation. Nonlinear Dyn. 2023, 111, 17455–17462. [Google Scholar] [CrossRef]
- Houwe, A.; Abbagari, S.; Akinyemi, L.; Saliou, Y.; Justin, M.; Doka, S.Y. Modulation instability, bifurcation analysis and solitonic waves in nonlinear optical media with odd-order dispersion. Phys. Lett. 2023, 488, 129134. [Google Scholar] [CrossRef]
- Houwe, A.; Sabi’u, J.; Betchewe, G.; Inc, M.; Doka, S.Y. Modulation analysis and optical solitons of perturbed nonlinear Schrödinger equation. Rev. Mex. FíSica 2021, 67. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabi’u, J.; Ibrahim, I.S.; Neamprem, K.; Sungnul, S.; Sirisubtawee, S. Generalized Modified Unstable Nonlinear Schrödinger’s Equation: Optical Solitons and Modulation Instability. Mathematics 2025, 13, 2032. https://doi.org/10.3390/math13122032
Sabi’u J, Ibrahim IS, Neamprem K, Sungnul S, Sirisubtawee S. Generalized Modified Unstable Nonlinear Schrödinger’s Equation: Optical Solitons and Modulation Instability. Mathematics. 2025; 13(12):2032. https://doi.org/10.3390/math13122032
Chicago/Turabian StyleSabi’u, Jamilu, Ibrahim Sani Ibrahim, Khomsan Neamprem, Surattana Sungnul, and Sekson Sirisubtawee. 2025. "Generalized Modified Unstable Nonlinear Schrödinger’s Equation: Optical Solitons and Modulation Instability" Mathematics 13, no. 12: 2032. https://doi.org/10.3390/math13122032
APA StyleSabi’u, J., Ibrahim, I. S., Neamprem, K., Sungnul, S., & Sirisubtawee, S. (2025). Generalized Modified Unstable Nonlinear Schrödinger’s Equation: Optical Solitons and Modulation Instability. Mathematics, 13(12), 2032. https://doi.org/10.3390/math13122032