Chaotic Image Security Techniques and Developments: A Review
Abstract
1. Introduction
2. Systems and Theory of Chaos
2.1. Discrete Chaotic Maps
2.2. Continuous Chaotic Systems
2.3. Coupled Map Lattice
2.4. Memristor Chaotic System
2.5. Properties of Chaos
2.6. Performance Evaluation of Chaotic Systems
2.7. Chaotic System Exploitation Nethods and Examples
3. Chaos-Based Image Encryption
3.1. Image Database
3.2. Spatial Domain Techniques
3.2.1. Scrambling Technique
3.2.2. Diffusion Technique
3.2.3. Encoding Technique
3.2.4. Substitution Technique
3.3. Frequency Domain Transform
3.4. Performance Analysis
4. Watermarking and Steganography
4.1. Watermarking Technique
4.1.1. Robust Watermarking
4.1.2. Fragile Watermarking
4.1.3. Reversible Watermarking
4.2. Steganography Technique
4.3. Performance Analysis
5. Recent Developments in Chaos-Based Image Security
5.1. FPGA Implements of Algorithms
5.2. Quantum Image Algorithm Design
5.2.1. Quantum Computing in Image Security
5.2.2. Quantum Decryption Attacks and Robustness Analysis
5.3. Attack-Resistance and Image Recovery
5.4. Deep Learning and Neural Network Method
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.Y.; Yorke, J.A. Period Three Implies Chaos. Am. Math. Mon. 1975, 82, 985. [Google Scholar] [CrossRef]
- Fridrich, J. Symmetric Ciphers Based on Two-Dimensional Chaotic Maps. Int. J. Bifurc. Chaos 1998, 8, 1259–1284. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z.D.; Fang, J.A. Image Encryption Using Chaotic Coupled Map Lattices with Time-Varying Delays. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2456–2468. [Google Scholar] [CrossRef]
- Katzenbeisser, S.; Petitcolas, F.A.P. Defining Security in Steganographic Systems. In Proceedings of the Security and Watermarking of Multimedia Contents 2022, San Jose, CA, USA, 29 April 2002. [Google Scholar]
- Cox, I.J.; Miller, M.L. A Review of Watermarking and the Importance of Perceptual Modeling. In Proceedings of the SPIE Electronic Imaging ‘97, Storage and Retrieval for Image and Video Databases, San Jose, CA, USA, 8–14 February 1997. [Google Scholar]
- Rani, M.; Agarwal, R. A New Experimental Approach to Study the Stability of Logistic Map. Chaos Solitons Fractals 2009, 41, 2062–2066. [Google Scholar] [CrossRef]
- Hénon, M. A Two-Dimensional Mapping with a Strange Attractor. Commun. Math. Phys. 1976, 50, 69–77. [Google Scholar] [CrossRef]
- Silva, L.; Rocha, J.L.; Silva, M.T. Bifurcations of 2-Periodic Nonautonomous Stunted Tent Systems. Int. J. Bifurc. Chaos 2017, 27, 1730020. [Google Scholar] [CrossRef]
- Lorenz, E. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Chen, G.; Ueta, T. Yet Another Chaotic Attractor. Int. J. Bifurc. Chaos 1999, 9, 1465–1466. [Google Scholar] [CrossRef]
- Matsumoto, T.; Chua, L.O.; Komuro, M. The double scroll family. IEEE Trans. Circuits Syst. 1985, 32, 797–818. [Google Scholar] [CrossRef]
- Kaneko, K. Pattern Dynamics in Spatiotemporal Chaos: Pattern Selection, Diffusion of Defect and Pattern Competition Intermittency. Phys. D Nonlinear Phenom. 1989, 34, 1–41. [Google Scholar] [CrossRef]
- Rhouma, R.; Meherzi, S.; Belghith, S. OCML-Based Colour Image Encryption. Chaos Solitons Fractals 2009, 40, 309–318. [Google Scholar] [CrossRef]
- Khellat, F.; Ghaderi, A.; Vasegh, N. Li-Yorke Chaos and Synchronous Chaos in A Globally Nonlocal Coupled Map Lattice. Chaos Solitons Fractals 2011, 44, 934–939. [Google Scholar] [CrossRef]
- Tao, Y.; Cui, W.; Zhang, Z. Spatiotemporal Chaos in Multiple Dynamically Coupled Map Lattices and Its Application in A Novel Image Encryption Algorithm. J. Inf. Secur. Appl. 2020, 55, 102650. [Google Scholar] [CrossRef]
- Liu, P.; Wang, X.; Su, Y.; Liu, H.; Unar, S. Globally Coupled Private Image Encryption Algorithm Based on Infinite Interval Spatiotemporal Chaotic System. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 2511–2522. [Google Scholar] [CrossRef]
- Du, L.; Teng, L.; Liu, H.; Lu, H. Multiple Face Images Encryption Based on A New Non-Adjacent Dynamic Coupled Mapping Lattice. Expert Syst. Appl. 2024, 238, 121728. [Google Scholar] [CrossRef]
- Chua, L. Memristor-The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Strukov, D.; Snider, G.; Stewart, D.; Williams, R. The Missing Memristor Found. Nature 2008, 453, 80–83. [Google Scholar] [CrossRef]
- Wan, Q.; Zhou, Z.; Ji, W.; Wang, C.; Yu, F. Dynamic Analysis and Circuit Realization of a Novel No-Equilibrium 5D Memristive Hyperchaotic System with Hidden Extreme Multistability. Complexity 2020, 2020, 7106861. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Rajagopal, K.; Leutcho, G.; Krejcar, O.; Namazi, H.; Hussain, I. Multistable Dynamics and Control of a New 4D Memristive Chaotic Sprott B System. Chaos Solitons Fractals 2022, 156, 111834. [Google Scholar] [CrossRef]
- Li, P.; Feng, X.; Lu, H.; Zhou, S.; Zhang, H. SAECNet: Self-Attention Encryption and Compression Network Based on Bidirectional Cyclic Multi-Scroll Memristor Neural Network. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.; Swinney, H.; Vastano, J. Determining Lyapunov Exponents from a Time Series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Arora, S.; Hu, W.; Kothari, P.K. An Analysis of the T-SNE Algorithm for Data Visualization. In Proceedings of the Conference on Learning Theory, Stockholm, Sweden, 6–9 July 2018; PMLR: London, UK; pp. 1455–1462. [Google Scholar]
- Zhang, Q.; Su, C.; Luo, Q.; Grebogi, C.; Huang, Z.; Jiang, J. Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders. Research 2025, 8, 0648. [Google Scholar] [CrossRef]
- Fan, C.; Ding, Q. Constructing N-Dimensional Discrete Non-Degenerate Hyperchaotic Maps Using QR Decomposition. Chaos Solitons Fractals 2023, 174, 113915. [Google Scholar] [CrossRef]
- Che, Y.; Cheng, C.; Liu, Z.; Zhang, Z. Fast Basin Stability Estimation for Dynamic Systems under Large Perturbations with Sequential Support Vector Machine. Phys. D Nonlinear Phenom. 2020, 405, 132381. [Google Scholar] [CrossRef]
- Marwan, N.; Kraemer, K.H. Trends in Recurrence Analysis of Dynamical Systems. Eur. Phys. J. Spec. Top. 2023, 232, 5–27. [Google Scholar] [CrossRef]
- Huang, L.; Yao, W.; Xiang, J.; Zhang, Z. Heterogeneous and Homogenous Multistabilities in a Novel 4D Memristor-Based Chaotic System with Discrete Bifurcation Diagrams. Complexity 2020, 2020, 2408460. [Google Scholar] [CrossRef]
- Farjami, A.A.; Yaghoobi, M.; Kardehi Moghaddam, R. Extended Cascade Chaotic Systems and Estimation Parameters with New Chaotic Grey Wolf Algorithm. J. Exp. Theor. Artif. Intell. 2024, 36, 1187–1211. [Google Scholar] [CrossRef]
- Thoa, T.T.; Pei, Y. Chaotic Evolution Algorithm with Multiple Chaotic Systems. In Proceedings of the 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Chiang Mai, Thailand, 23–26 September 2020; IEEE: Piscataway, NJ, USA; pp. 814–819. [Google Scholar]
- Xie, H.; Gao, Y.; Zhang, H. An Image Encryption Algorithm Based on Novel Block Scrambling Scheme and Josephus Sequence Generator. Multimedia Tools Appl. 2023, 82, 16431–16453. [Google Scholar] [CrossRef]
- Sun, J.; Li, C.; Wang, Z.; Wang, Y.A. Memristive Fully Connect Neural Network and Application of Medical Image Encryption Based on Central Diffusion Algorithm. IEEE Trans. Ind. Inform. 2023, 20, 3778–3788. [Google Scholar] [CrossRef]
- Mondal, B.; Singh, J.P. A Lightweight Image Encryption Scheme Based on Chaos and Diffusion Circuit. Multimed. Tools Appl. 2022, 81, 34547–34571. [Google Scholar] [CrossRef]
- Liu, L.; Hao, S.; Lin, J.; Wang, Z.; Hu, X.; Miao, S. Image Block Encryption Algorithm Based on Chaotic Maps. IET Signal Process. 2018, 12, 22–30. [Google Scholar] [CrossRef]
- Manivannan, D.; Murugan, B. Image Encryption Using Chaos Based Heuristic Diffusion. SN Comput. Sci. 2023, 4, 239. [Google Scholar] [CrossRef]
- Ge, B.; Shen, Z.; Zhang, J. Fast Chaotic Image Encryption Algorithm Using a Novel Divide and Conquer Diffusion strategy. IEEE Access 2022, 10, 95986–96005. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Q.; Du, B. Chaotic Color Image Encryption Based on 4D Chaotic Maps and DNA Sequence. Opt. Laser Technol. 2022, 148, 107753. [Google Scholar] [CrossRef]
- Chen, X.; Mou, J.; Cao, Y.; Banerjee, S. Chaotic Multiple-Image Encryption Algorithm Based on Block Scrambling and Dynamic DNA Coding. Int. J. Bifurc. Chaos 2023, 33, 2350190. [Google Scholar] [CrossRef]
- Zou, C.; Wang, X.; Zhou, C.; Xu, S.; Huang, C. A Novel Image Encryption Algorithm Based on DNA Strand Exchange and Diffusion. Appl. Math. Comput. 2022, 430, 127291. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Banerjee, S.; Cao, Y.; Xiong, L.; Chen, X. An Effective Multiple-Image Encryption Algorithm Based On 3D Cube and Hyperchaotic Map. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 1535–1551. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, Y.; Zhang, Y.; Lu, H.; Zhang, H. Image Encryption Algorithm Based on the Dynamic RNA Computing and a New Chaotic Map. Integration 2025, 101, 102336. [Google Scholar] [CrossRef]
- Wang, W.; Sun, J.; Wang, G.; Zhang, H. Fisher-Yates Scrambling Algorithm Combined with S-Box Color Image Encryption Technology Based On 3D-SCCM Chaotic System. Multimed. Tools Appl. 2023, 82, 45233–45258. [Google Scholar] [CrossRef]
- Nan, S.; Feng, X.; Wu, Y.; Zhang, H. Remote Sensing Image Compression and Encryption Based on Block Compressive Sensing And 2D-LCCCM. Nonlinear Dyn. 2022, 108, 2705–2729. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Li, B.; Banerjee, S.; Sun, B. Multi-Image Hybrid Encryption Algorithm Based on Pixel Substitution and Gene Theory. Fractals 2023, 31, 2340111. [Google Scholar] [CrossRef]
- Zhou, S.; Qiu, Y.; Wang, X.; Zhang, Y. Novel Image Cryptosystem Based on New 2D Hyperchaotic Map and Dynamical Chaotic S-Box. Nonlinear Dyn. 2023, 111, 9571–9589. [Google Scholar] [CrossRef]
- Alexan, W.; Alexan, N.; Gabr, M. Multiple-Layer Image Encryption Utilizing Fractional-Order Chen Hyperchaotic Map and Cryptographically Secure Prngs. Fractal Fract. 2023, 7, 287. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, Y.; Liang, M.; Shang, Y.; Wang, F.; Wang, Y. Double Image Encryption Based on Symmetry of 2D-DFT And Equal Modulus Decomposition. Multimed. Tools Appl. 2021, 80, 8973–8998. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, J.; Wang, J. An Image Compression Encryption Based on the Semi-Tensor Product and the DFT Measurement Matrix. Optik 2023, 288, 171175. [Google Scholar] [CrossRef]
- Wang, M.; Fu, X.; Yan, X.; Teng, L. A New Chaos-Based Image Encryption Algorithm Based on Discrete Fourier Transform and Improved Joseph Traversal. Mathematics 2024, 12, 638. [Google Scholar] [CrossRef]
- Cao, F.; Guo, D.; Wang, T.; Yao, H.; Li, J.; Qin, C. Universal Screen-Shooting Robust Image Watermarking with Channel-Attention in DCT Domain. Expert Syst. Appl. 2024, 238, 122062. [Google Scholar] [CrossRef]
- Jiang, M.R.; Feng, X.F.; Wang, C.P.; Fan, X.L.; Zhang, H. Robust Color Image Watermarking Algorithm Based on Synchronization Correction with Multi-Layer Perceptron and Cauchy Distribution Model. Appl. Soft Comput. 2023, 140, 110271. [Google Scholar] [CrossRef]
- Lone, P.N.; Mir, U.H.; Gaffar, A. Hyperchaotic Image Encryption Using DNA Coding and Discrete Cosine Transform. J. Frankl. Inst. 2023, 360, 13318–13338. [Google Scholar] [CrossRef]
- Chowdhury, R.S.; Jana, J.; Tripathi, S.; Bhaumik, J. Improved DWT And IDWT Architectures for Image Compression. Microprocess. Microsyst. 2024, 104, 104990. [Google Scholar] [CrossRef]
- Feng, X.F.; Yang, J.; Wu, Y.F.; Zhang, H. Robust Encryption and Compression of Sequential Images Using STP-CS And 2D-EPHM: A Novel Hybrid Symmetric-Asymmetric Approach. Vis. Comput. 2025. [Google Scholar] [CrossRef]
- Gao, L.; Qi, L.; Guan, L. The Property of Frequency Shift In 2D-FRFT Domain with Application to Image Encryption. IEEE Signal Process. Lett. 2021, 28, 185–189. [Google Scholar] [CrossRef]
- Tao, L.; Liang, X.; Wu, Z.; Han, L.; Zhu, J. Plaintext Related Optical Image Hybrid Encryption Based on Fractional Fourier Transform and Generalized Chaos of Multiple Controlling Parameters. J. Grid Comput. 2023, 21, 17. [Google Scholar] [CrossRef]
- Wang, M.M.; Song, X.G.; Zhou, N.R.; Liu, S.H. Novel 1-D Enhanced Log-Logistic Chaotic Map and Asymmetric Generalized Gaussian Apertured Frft for Image Encryption. Chaos Solitons Fractals 2024, 187, 115443. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, N.R. Quantum Color Image Compression and Encryption Algorithm Based on Fibonacci Transform. Quantum Inf. Process. 2023, 22, 39. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C.; Cui, M.; Luo, Y.; Wu, T.; Liang, X. Joint Compressed Sensing and JPEG Coding Based Secure Compression Scheme In OFDM-PON. Opt. Commun. 2022, 510, 127901. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M.S. Image Quality Assessment Through FSIM, SSIM, MSE And PSNR-A Comparative Study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Biban, G.; Chugh, R.; Panwar, A. Image Encryption Based on 8D Hyperchaotic System Using Fibonacci Q-Matrix. Chaos Solitons Fractals 2023, 170, 113396. [Google Scholar] [CrossRef]
- Sun, Y.J.; Zhang, H.; Wang, C.P.; Li, Z.Y.; Wang, X.Y. Networked Chaotic Map Model and Its Applications in Color Multiple Image Encryption. IEEE Photonics J. 2020, 12, 7801218. [Google Scholar] [CrossRef]
- Gao, Y.J.; Xie, H.W.; Zhang, J.; Zhang, H. A Novel Quantum Image Encryption Technique Based on Improved Controlled Alternated Quantum Walks and Hyperchaotic System. Phys. A Stat. Mech. Its Appl. 2022, 598, 127334. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.Q.; Wang, X.Y.; Yan, P.F. Novel Multiple Images Encryption Algorithm Using CML System and DNA Encoding. IET Image Process. 2020, 14, 518–529. [Google Scholar] [CrossRef]
- Affes, M.; Meziou, M.S.; Ghorbel, F. Robust Color Watermarking Method Based on Clifford Transform; Springer International Publishing: Cham, Switzerland, 2016; pp. 453–464. [Google Scholar]
- Zhang, X.; Zhang, W.; Sun, W.; Sun, X.; Jha, S. A Robust 3-D Medical Watermarking Based on Wavelet Transform for Data Protection. Comput. Syst. Sci. Eng. 2022, 41, 1043–1056. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.Y.; Chen, Y.L.; Lu, C.; Yan, P. Fast image reconstruction method using radial harmonic Fourier moments and its application in digital watermarking. J. Frankl. Inst. 2025, 362, 107391. [Google Scholar] [CrossRef]
- Jiang, M.R.; Feng, X.F.; Wang, C.P.; Li, Z.; Zhang, H. Robust and Blind Watermarking Algorithm for Chaotic System Encryption Based on Discrete Cosine Transform-Singular Value Decomposition. J. Electron. Imaging 2023, 32, 013020. [Google Scholar] [CrossRef]
- Lu, C.C.; Feng, X.; Teng, L.; Wang, C.; Zhang, H. Blind Watermarking Algorithm with 2D-SCCM Chaotic System Encryption Based on SURF And Rhfms. Phys. Scr. 2024, 99, 035247. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Xia, Z.; Zhang, C. Ternary Radial Harmonic Fourier Moments Based Robust Stereo Image Zero-Watermarking Algorithm. Inf. Sci. 2019, 470, 109–120. [Google Scholar] [CrossRef]
- Fan, D.; Li, Y.; Gao, S.; Chi, W.; Lv, C. A Novel Zero Watermark Optimization Algorithm Based on Gabor Transform and Discrete Cosine Transform. Concurr. Comput. Pract. Exp. 2022, 34, e5689. [Google Scholar] [CrossRef]
- Azeroual, A.; Afdel, K. A Fragile Watermarking Scheme for Image Authentication Using Wavelet Transform, International Conference on Image and Signal Processing; Springer International Publishing: Cham, Switzerland, 2016; pp. 337–345. [Google Scholar]
- Ahmadi, S.B.; Zhang, G.; Rabbani, M.; Boukela, L.; Jelodar, H. An Intelligent and Blind Dual Color Image Watermarking for Authentication and Copyright Protection. Appl. Intell. 2021, 51, 1701–1732. [Google Scholar] [CrossRef]
- Bhalerao, S.; Ansari, I.A.; Kumar, A. A Secure Image Watermarking for Tamper Detection and Localization. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1057–1068. [Google Scholar] [CrossRef]
- Peng, F.; Liao, T.; Long, M.; Li, J.; Zhang, W.; Zhou, Y. Semi-Fragile Reversible Watermarking For 3D Models Using Spherical Crown Volume Division. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 6531–6543. [Google Scholar] [CrossRef]
- Hurrah, N.N.; Khan, E.; Khan, U. CADEN: Cellular Automata and DNA Based Secure Framework for Privacy Preserving in Iot Based Healthcare. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 2631–2643. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Yao, H.X.; Gao, W.; Liu, Y. An Image Fragile Watermark Scheme Based on Chaotic Image Pattern and Pixel-Pairs. Appl. Math. Comput. 2007, 185, 869–882. [Google Scholar] [CrossRef]
- Feng, X.F.; Jiang, M.R.; Zhang, H.; Wang, C. Robust Multifunctional Watermarking System Based Zero-Watermarking and Polar Harmonic Fourier Moments. J. Frankl. Inst. 2024, 361, 319–340. [Google Scholar] [CrossRef]
- Dragoi, I.C.; Coltuc, D. Local-Prediction-Based Difference Expansion Reversible Watermarking. IEEE Trans. Image Process. 2014, 23, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yuan, X.; Liu, T.; Huang, G.; Lin, Z.; Li, J. FRRW: A Feature Extraction-Based Robust and Reversible Watermarking Scheme Utilizing Zernike Moments and Histogram Shifting. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101698. [Google Scholar] [CrossRef]
- Tang, Y.; Li, K.; Wang, C.; Bian, S.; Huang, Q. A Two-Stage Robust Reversible Watermarking Using Polar Harmonic Transform for High Robustness and Capacity. Inf. Sci. 2024, 654, 119786. [Google Scholar] [CrossRef]
- Garcia, H.; Feregrino, U.; Menendez, O.; Williams, R. Evaluation of A Framework for Robust Image Reversible Watermarking. Appl. Sci. 2022, 12, 7242. [Google Scholar] [CrossRef]
- Zhan, C.; Leng, L.; Chang, C.C.; Horng, J. Reversible Image Fragile Watermarking with Dual Tampering Detection. Electronics 2024, 13, 1884. [Google Scholar] [CrossRef]
- Qi, W.; Guo, S.; Hu, W. Generic Reversible Visible Watermarking Via Regularized Graph Fourier Transform Coding. IEEE Trans. Image Process. 2021, 31, 691–705. [Google Scholar] [CrossRef]
- Meng, L.; Jiang, X.; Sun, T. A Review of Coverless Steganography. Neurocomputing 2024, 566, 126945. [Google Scholar] [CrossRef]
- Melman, A.; Evsutin, O. Image Data Hiding Schemes Based on Metaheuristic Optimization: A Review. Artif. Intell. Rev. 2023, 56, 15375–15447. [Google Scholar] [CrossRef]
- Kadhim, I.J.; Premaratne, P.; Vial, P.J.; Halloran, B. Comprehensive Survey of Image Steganography: Techniques, Evaluations, And Trends in Future Research. Neurocomputing 2019, 335, 299–326. [Google Scholar] [CrossRef]
- Muhuri, P.K.; Ashraf, Z.; Goel, S. A Novel Image Steganographic Method Based on Integer Wavelet Transformation and Particle Swarm Optimization. Appl. Soft Comput. 2020, 92, 106257. [Google Scholar] [CrossRef]
- Sun, J.Y.; Cai, H.; Wang, G.; Gao, Z.; Zhang, H. FPGA Image Encryption-Steganography Using A Novel Chaotic System with Line Equilibria. Digit. Signal Process. 2023, 134, 103889. [Google Scholar]
- Kombrink, M.; Geradts, Z.; Worring, M. Image Steganography Approaches and Their Detection Strategies: A Survey. ACM Comput. Surv. 2024, 57, 1–40. [Google Scholar] [CrossRef]
- Tahiri, M.; Bencherqui, A.; Karmouni, H.; Amakdouf, H.; Mirjalili, S.; Motahhir, S.; Abouhawwash, M.; Askar, S.; Sayyouri, M.; Qjidaa, H. Implementation of A Steganography System Based on Hybrid Square Quaternion Moment Compression in IoMT. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 101604. [Google Scholar] [CrossRef]
- Tai, W.L.; Yeh, C.M.; Chang, C.C. Reversible Data Hiding Based on Histogram Modification of Pixel Differences. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, 906–910. [Google Scholar]
- Yin, Z.; Xiang, Y.; Zhang, X. Reversible Data Hiding in Encrypted Images Based on Multi-MSB Prediction and Huffman Coding. IEEE Trans. Multimed. 2019, 22, 874–884. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, H.; Zhang, W.; Yu, N. Reversible Data Hiding in Encrypted Three-Dimensional Mesh Models. IEEE Trans. Multimed. 2017, 20, 55–67. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Chen, Y.; Abdullahi, S.; Luo, J. Constructing Immunized Stego-Image for Secure Steganography Via Artificial Immune System. IEEE Trans. Multimed. 2023, 25, 8320–8333. [Google Scholar] [CrossRef]
- Cao, W.; Cai, H.; Hua, Z. N-Dimensional Chaotic Map with Application in Secure Communication. Chaos Solitons Fractals 2022, 163, 112519. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, R.; Feng, X.; Li, P.; Chen, Y.; Zhang, H. An n-Dimensional Chaotic Map with Application in Reversible Data Hiding for Medical Images. Entropy 2024, 26, 254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, X.; Guo, Y.; Qin, C.; Liu, F. Multiple Robustness Enhancements for Image Adaptive Steganography in Lossy Channels. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 2750–2764. [Google Scholar] [CrossRef]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On The Mathematical Properties of the Structural Similarity Index. IEEE Trans. Image Process. 2011, 21, 1488–1499. [Google Scholar] [CrossRef]
- Qin, C.; Qian, X.; Hong, W.; Zhang, H. An Efficient Coding Scheme for Reversible Data hiding In Encrypted Image with Redundancy Transfer. Inf. Sci. 2019, 487, 176–192. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Barni, M. A Survey of Deep Neural Network Watermarking Techniques. Neurocomputing 2021, 461, 171–193. [Google Scholar] [CrossRef]
- Krasula, L.; Le Callet, P.; Fliegel, K.; Klima, M. Quality Assessment of Sharpened Images: Challenges, Methodology, And Objective Metrics. IEEE Trans. Image Process. 2017, 26, 1496–1508. [Google Scholar] [CrossRef]
- Li, Q.; Wang, X.; Ma, B.; Wang, X.; Wang, C.; Gao, S.; Shi, Y. Concealed Attack for Robust Watermarking Based on Generative Model and Perceptual Loss. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 5695–5706. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, X.; Zhang, L.; Qin, Z.; Sun, X.; Ren, K. A Privacy-Preserving and Copy-Deterrence Content-Based Image Retrieval Scheme in Cloud Computing. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2594–2608. [Google Scholar] [CrossRef]
- Yin, Z.; Ji, Y.; Luo, B. Reversible Data Hiding in JPEG Images with Multi-Objective Optimization. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2343–2352. [Google Scholar] [CrossRef]
- Sobhy, M.I.; Shehata, A.R. Chaotic Algorithms for Data Encryption. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Volume 2, pp. 997–1000. [Google Scholar]
- Utami, D.; Suwastio, H.; Sumadjudin, B. FPGA Implementation of Digital Chaotic Cryptography. In Proceedings of the EurAsia-ICT 2002: Information and Communication Technology, Shiraz, Iran, 29–31 October 2002; Volume 2510, pp. 239–247. [Google Scholar]
- Balakrishnan, R.; Rengarajan, A.; Rayappan, J.B.B. Hybrid Image Crypto System for Secure Image Communication-A VLSI Approach. Microprocess. Microsyst. 2017, 50, 1–13. [Google Scholar]
- Boutros, A.; Hesham, S.; Georgey, B.; Abd El Ghany, M. Hardware Acceleration of Novel Chaos-Based Image Encryption for IOT Application. In Proceedings of the 2017 29th International Conference on Microelectronics, Beirut, Lebanon, 10–13 December 2017; pp. 1–4. [Google Scholar]
- Gafsi, M.; Hajjaji, M.A.; Malek, J.; Mtibaa, A. FPGA Hardware Acceleration of An Improved Chaos-Based Cryptosystem for Real-Time Image Encryption and Decryption. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 7001–7022. [Google Scholar] [CrossRef]
- Fetteha, M.A.; Sayed, W.S.; Said, L.A. A Lightweight Image Encryption Scheme Using DNA Coding and Chaos. Electronics 2023, 12, 4895. [Google Scholar] [CrossRef]
- Moghimi Moghaddam, S.S.; Rashtchi, V.; Azarpeyvand, A. Parallel Chaos-Based Image Encryption Algorithm: High-Level Synthesis and FPGA Implementation. J. Supercomput. 2024, 80, 10985–11013. [Google Scholar] [CrossRef]
- Demirkol, A.S.; Sahin, M.E.; Karakaya, B.; Ulutas, H.; Ascoli, A.; Tetzlaff, R. Real Time Hybrid Medical Image Encryption Algorithm Combining Memristor-Based Chaos with DNA Coding. Chaos Solitons Fractals 2024, 183, 114923. [Google Scholar] [CrossRef]
- Guang, Y.; Ding, Q. Dynamics Analysis of A Novel Parametrically Controllable Symmetric Multi-Scroll Chaotic System and FPGA Design of An Image Encryption System. Chaos Solitons Fractals 2024, 188, 115572. [Google Scholar] [CrossRef]
- Vijayakumar, M.; Ahilan, A. An Optimized Chaotic S-Box for Real-Time Image Encryption Scheme Based On 4-Dimensional Memristive Hyperchaotic Map. Ain Shams Eng. J. 2024, 15, 102620. [Google Scholar] [CrossRef]
- Yang, C.H.; Chien, Y.S. FPGA Implementation and Design of A Hybrid Chaos-AES Color Image Encryption Algorithm. Symmetry 2020, 12, 189. [Google Scholar] [CrossRef]
- Cai, H.; Sun, J.; Gao, Z.; Zhang, H. A Novel Multi-Wing Chaotic System with FPGA Implementation and Application in Image Encryption. J. Real-Time Image Process. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Amdouni, R.; Gafsi, M.; Abbassi, N.; Hajjaji, M.; Mtibaa, A. Robust Hardware Implementation of A Block-Cipher Scheme Based on Chaos and Biological Algebraic Operations. Multimed. Tools Appl. 2023, 82, 37097–37130. [Google Scholar] [CrossRef]
- Vinoth Raj, R.; Siva Janakiraman, S.; Rengarajan, A. Reconfigurable Color Medical Image Encryptor Using Hardware Accelerated Chao(S)-Box Triplets. J. Real-Time Image Process. 2023, 20, 1–26. [Google Scholar]
- Deng, Q.; Wang, C.; Sun, Y.; Deng, Z.; Yang, G. Memristive Tabu Learning Neuron Generated Multi-Wing Attractor with FPGA Implementation and Application in Encryption. IEEE Trans. Circuits Syst. I Regul. Pap. 2025, 72, 300–310. [Google Scholar] [CrossRef]
- Arumugham, S.; Rajagopalan, S.; Rayappan, J.; Amirtharajan, R. Tamper-Resistant Secure Medical Image Carrier: An IWT–SVD–Chaos–FPGA Combination. Arab. J. Sci. Eng. 2019, 44, 9561–9580. [Google Scholar] [CrossRef]
- Kaibou, R.; Azzaz, M.S.; Benssalah, M.; Teguig, D.; Hamil, H.; Merah, A.; Akrour, M. Real-Time FPGA Implementation of A Secure Chaos-Based Digital Crypto-Watermarking System in The DWT Domain Using Co-Design Approach. J. Real-Time Image Process. 2021, 18, 2009–2025. [Google Scholar] [CrossRef]
- Sun, J.Y.; Cai, H.; Gao, Z.B.; Wang, C.; Zhang, H. A Novel Non-Equilibrium Hyperchaotic System and Application on Color Image Steganography with FPGA Implementation. Nonlinear Dyn. 2023, 111, 3851–3868. [Google Scholar] [CrossRef]
- Li, S.Y.; Wu, G.Y.; Sun, J.Y.; Yan, P.; Zhang, H. Novel 3D-PCHCS Design and Application on Ophthalmic Medical Image Copyright Protection with FPGA Implementation. J. Real-Time Image Process. 2025, 22, 33. [Google Scholar] [CrossRef]
- Akhshani, A.; Akhavan, A.; Lim, S.C.; Hassan, Z. An Image Encryption Scheme Based on Quantumlogistic Map. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4653–4661. [Google Scholar] [CrossRef]
- Jiang, N.; Dong, X.; Hu, H.; Ji, Z.; Zhang, W. Quantum Image Encryption Based on Henon Mapping. Int. J. Theor. Phys. 2019, 58, 979–991. [Google Scholar] [CrossRef]
- Abd EL-Latif, A.A.; Abd-El-Atty, B.; Venegas-Andraca, S.E. Controlled Alternate Quantum walk-Based Pseudo-Random Number Generator and Its Application to Quantum Color Image encryption. Phys. A Stat. Mech. Its Appl. 2020, 547, 123869. [Google Scholar] [CrossRef]
- Sun, J.Y.; Wang, W.T.; Yan, P.F.; Zhang, H. Quantum Steganography Scheme and Circuit Design Based on The Synthesis of Three Grayscale Images in The HSI Color Space. Quantum Inf. Process. 2023, 22, 349. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, B.; Yao, Y.; Wang, X. The Synchronisation Control of Fractional 4-D Quantum Game Chaotic Map with Its Application in Image Encryption. Appl. Intell. 2025, 55, 343. [Google Scholar] [CrossRef]
- Rehman, M.U. Quantum-Enhanced Chaotic Image Encryption: Strengthening Digital Data Security with 1-D Sine-Based Chaotic Maps and Quantum Coding. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 101980. [Google Scholar] [CrossRef]
- Khan, M.S.; Ahmad, J.; Al-Dubai, A.; Pitropakis, N.; Ghaleb, B.; Ullah, A.; Khan, M.; Buchanan, W. Chaotic Quantum Encryption to Secure Image Data in Post Quantum Consumer Technology. IEEE Trans. Consum. Electron. 2024, 70, 7087–7100. [Google Scholar] [CrossRef]
- Dong, Y.; Yin, C.; Xu, C.; Yan, R. A Quantum Image Encryption Method for Dual Chaotic Systems Based on Quantum Logistic Mapping. Phys. Scr. 2024, 99, 015103. [Google Scholar] [CrossRef]
- Liu, X.D.; Chen, Q.H.; Zhao, R.S.; Liu, G.; Guan, S.; Wu, L.; Fan, X. Quantum Image Encryption Algorithm Based on Four-Dimensional Chaos. Front. Phys. 2024, 12, 1230294. [Google Scholar] [CrossRef]
- Yan, X.; Teng, L.; Su, Y. A Novel Chaotic Image Encryption Is Based on Fractional Wavelet Decomposition and Quantum Transform Model. Phys. Scr. 2024, 99, 055217. [Google Scholar] [CrossRef]
- Li, N.; Tang, Z. A Quantum Reversible Color-To-Grayscale Conversion Scheme via Image Encryption Based on True Random Numbers and Two-Dimensional Quantum Walks. Signal Process. 2025, 233, 109949. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, X. Adaptive Feature Calculation and Diagonal Mapping for Successive Recovery of Tampered Regions. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2617–2630. [Google Scholar] [CrossRef]
- Wu, W.; Guo, X.; Chen, Y.; Wang, S.; Chen, J. Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction. IEEE Trans. Instrum. Meas. 2022, 72, 4501111. [Google Scholar] [CrossRef]
- Shen, M.; Gan, H.; Ma, C.; Ning, C.; Li, H.; Liu, F. MTC-CSNet: Marrying Transformer and Convolution for Image Compressed Sensing. IEEE Trans. Cybern. 2024, 54, 4949–4961. [Google Scholar] [CrossRef] [PubMed]
- Sekar, R.; Ravi, G. Taylor Sun Flower Optimization-Based Compressive Sensing for Image Compression and Recovery. Comput. J. 2023, 66, 873–887. [Google Scholar]
- Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A Deep Learning Approach for Image Compressive Sensing. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhang, Y.; Hua, Z.; Xiao, Z.; Weng, J. Client-Side Embedding of Screen-Shooting Resilient Image Watermarking. IEEE Trans. Inf. Forensics Secur. 2024, 19, 5357–5372. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Zhang, H.; Yu, P.; Gao, W. Lightweight Bit-Depth Recovery Network for Gaofen Satellite Multispectral Image Compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18635–18651. [Google Scholar] [CrossRef]
- Lin, Y.; Xie, Z.; Chen, T.; Cheng, X.; Wen, H. Image Privacy Protection Scheme Based on High-Quality Reconstruction DCT Compression and Nonlinear Dynamics. Expert Syst. Appl. 2024, 257, 124891. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Natiq, H.; Alkhayyat, A.; Farhan, A.; Al-Saidi, N.; Baleanu, D. Image Encryption Algorithm Based on New Fractional Beta Chaotic Maps. Comput. Model. Eng. Sci. 2022, 132, 119–131. [Google Scholar] [CrossRef]
- Luo, H.; Li, L.; Zhang, X. Secure Neural Network Watermarking Protocol Against Evidence Exposure Attack. IEEE Trans. Multimed. 2025. [Google Scholar] [CrossRef]
- Shang, C.; Cao, J.; Zhu, T.; Zhang, Y.; Niu, B.; Li, H. CADFA: A Clock Skew-Based Active Device Fingerprint Authentication Scheme for Class-1 Iot Devices. IEEE Syst. J. 2024, 18, 590–599. [Google Scholar] [CrossRef]
- Zhang, D.; Le, J.; Mu, N.; Wu, J.; Liao, X. Secure and Efficient Data Deduplication in Joint Cloud Storage. IEEE Trans. Cloud Comput. 2021, 11, 156–167. [Google Scholar] [CrossRef]
- Xue, L.; Liu, D.; Huang, C.; Shen, X.; Zhuang, W.; Sun, R.; Ying, B. Blockchain-Based Data Sharing with Key Update for Future Networks. IEEE J. Sel. Areas Commun. 2022, 40, 3437–3451. [Google Scholar] [CrossRef]
- Cheng, L.; Meng, F. Certificateless Public Key Authenticated Searchable Encryption with Enhanced Security Model in IIoT Applications. IEEE Internet Things J. 2022, 10, 1391–1400. [Google Scholar] [CrossRef]
- Wang, M.X.; Yang, H.M.; Jiang, D.H.; Yan, B.; Pan, J.; Wang, T. A Novel Quantum Image Watermarking Scheme for Tamper Localization and Self-Recovery. Quantum Inf. Process. 2022, 21, 277. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Altameem, T.; Ahmad, M.; Hammad, M.; Plawiak, P.; Tadeusiewicz, R.; Abd El-Latif, A. Aucfsr: Authentication and Color Face Self-Recovery Using Novel 2D Hyperchaotic System and Deep Learning Models. Sensors 2023, 23, 8957. [Google Scholar] [CrossRef]
- Huang, Q.; Zhao, X.; Li, G. Research on the application of Video encryption technology based on 7 dimensional CNN hyper chaos. In Proceedings of the 2018 10th International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 25–26 February 2018; pp. 448–451. [Google Scholar]
- Zhou, S. Image Encryption Technology Research Based on Neural Network. In Proceedings of the 2015 International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 19–20 December 2015; pp. 462–465. [Google Scholar]
- Wang, C.; Zhang, Y. A Novel Image Encryption Algorithm with Deep Neural Network. Signal Process. 2022, 196, 108536. [Google Scholar] [CrossRef]
- Feng, L.; Du, J.; Fu, C.; Song, W. Image Encryption Algorithm Combining Chaotic Image Encryption and Convolutional Neural Network. Electronics 2023, 12, 3455. [Google Scholar] [CrossRef]
- Gao, X.; Mou, J.; Banerjee, S.; Zhang, Y. Color-Gray Multi-Image Hybrid Compression–Encryption Scheme Based on BP Neural Network and Knight Tour. IEEE Trans. Cybern. 2023, 53, 5037–5047. [Google Scholar] [CrossRef]
- Li, P.; Feng, X.; Zhou, S.; Yan, P.; Zhang, H. Compression and Encryption for Remote Sensing Image Based On PSO-BP And 2D-MCCM. Phys. Scr. 2024, 99, 085268. [Google Scholar] [CrossRef]
- Feng, Q.; Li, P.; Lu, Z.; Li, C.; Wang, Z.; Duan, C.; Huang, F.; Weng, J.; Yu, P. Evit: Privacy-Preserving Image Retrieval Via Encrypted Vision Transformer in Cloud Computing. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 7467–7483. [Google Scholar] [CrossRef]
- Nagamori, T.; Shiota, S.; Kiya, H. Efficient Fine-Tuning with Domain Adaptation for Privacy-Preserving Vision Transformer. arXiv 2024, arXiv:2401.05126. [Google Scholar] [CrossRef]
- Amin, A.; Hasan, K.; Ullah, S.; Hong, L. AI-Driven Secure Data Sharing: A Trustworthy and Privacy-Preserving Approach. In Proceedings of the 2025 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 17–20 February 2025. [Google Scholar]
- Fan, L.; Li, M.; Hu, Z.; Hong, Y.; Kong, D. DNGG: Medical Image Lossless Encryption Via Deep Network Guided Generative. IEEE Signal Process. Lett. 2025, 32, 1331–1335. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Qin, Z.; Zhou, E.; Zhu, G.; Qin, Z.; Choo, K. Backdoor Attack on Deep Learning-Based Medical Image Encryption and Decryption Network. IEEE Trans. Inf. Forensics Secur. 2023, 19, 280–292. [Google Scholar] [CrossRef]
- Li, Y.; Gao, W.; Li, G.; Ma, S. Saliency Segmentation Oriented Deep Image Compression with Novel Bit Allocation. IEEE Trans. Image Process. 2024, 34, 16–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, J.; Su, W. Hifimsfa: Robust and High-Fidelity Image Watermarking Using Attention Augmented Deep Network. IEEE Signal Process. Lett. 2025, 32, 781–785. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Wang, G. Adaptor: Improving The Robustness and Imperceptibility of Watermarking By The Adaptive Strength Factor. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 6260–6272. [Google Scholar] [CrossRef]
- Li, Y.; Liao, X.; Wu, X. Screen-Shooting Resistant Watermarking with Grayscale Deviation Simulation. IEEE Trans. Multimed. 2024, 26, 10908–10923. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, W. Digital Watermarking Based on Neural Network and Image Features. In Proceedings of the 2009 Second International Conference on Information and Computing Science, Manchester, UK, 21–22 May 2009; Volume 2, pp. 238–240. [Google Scholar]
- Afsharizadeh, M.; Mohammadi, M. Prediction-Based Reversible Image Watermarking Using Artificial Neural Networks. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 896–910. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, T.; Liu, C.; Yu, S.; Zhou, W. High-Frequency Matters: Attack and Defense for Image-Processing Model Watermarking. IEEE Trans. Serv. Comput. 2024, 17, 1565–1579. [Google Scholar] [CrossRef]
Chaotic System | System Description | Reference |
---|---|---|
4D Memristorized chaotic systems | A 3D chaotic system realizing resistors in circuits by replacing them with smooth flux-controlled memristors, capable of generating an infinite number of coexisting attractors with both heterogeneous and homogeneous multistability | Ref. [30] |
Cascade hyperchaotic system | Propose new cascade structure with more parameters and more complex behaviors | Ref. [31] |
Chaotic systems related to chaotic evolutionary algorithms based on multiple maps | Including Logistic mapping, tent mapping and Gaussian mapping, etc., to analyze the impact of different chaotic systems on the algorithm performance in the framework of chaotic evolution. | Ref. [32] |
Type | Accuracy | Complexity | Robustness |
---|---|---|---|
Scrambling | Change of pixel position to disrupt image structure | Low | Moderate |
Diffusion | Pixel value diffusion propagation for enhanced plaintext sensitivity | Moderate | High |
Encoding | Convert pixel values by rule, rule-dependent combinations | Medium-high | Medium-high |
Substitution | Disrupt statistical properties by replacing pixel values based on chaotic sequences | High | High |
Type | Accuracy | Complexity | Robustness |
---|---|---|---|
DFT | Based on frequency component decomposition, accuracy depends on signal characteristics | Moderate | Moderate |
DCT | Better embedding detection performance using frequency domain characteristics | Moderate | Medium-high |
DWT | Multinomial image decomposition with better adaptation | Medium-high | High |
FrFT | Adaptation to unsteady signals in both time and frequency domains | High | High |
Type | Primary Application | Ability to Attacks | Impact on Host Image |
---|---|---|---|
Robust Watermark | Copyright protection | Strong | Irreversible |
Fragile Watermark | Tamper detection | Weak | Irreversible |
Reversible Watermark | Scenarios requiring preservation of original image quality | Moderate | Fully reversible |
Type | Accuracy | Complexity | Robustness |
---|---|---|---|
Adaptive steganography | High, precise hiding and extraction | High, high computational overhead | Better, against conventional attacks |
Static steganography | Low, easily detectable | Low, easy to realise | Poor, vulnerable |
Type | Principles of Attack | Typical Algorithms | Robustness |
---|---|---|---|
Shor algorithm attack | Fast decomposition of large integers using quantum parallelism to break cryptosystems based on large integer decompositions such as RSA and DH. | Akhshani et al. [127] | High |
Grover Quantum Search Algorithm | Reduces the search complexity from the classical O(N) down to O(N), threatening algorithms with small key space. | Jiang et al. [128] | Moderate |
Quantum difference attack | Use quantum superposition states to process multiple inputs simultaneously and analyse ciphertext differences to break the key. | Liu et al. [131] | High |
Reference | Contribution | Threat Type |
---|---|---|
Jiang et al. [53] | Proposed a robust watermarking method combining quaternion transform, MLP, and Cauchy distribution. | Active Attack |
Wu et al. [139] | Built the DEAR network to enhance image reconstruction. | Active Attack |
Shen et al. [140] | Designed a Transformer-based anti-compression framework. | Active Attack |
Xiao et al. [143] | Proposed a screen-capture-resistant protection scheme. | Passive Attack |
Lin et al. [145] | Developed an encryption system using DCT and scrambling. | Passive Attack |
Ibrahim et al. [146] | Used chaotic maps to enhance encryption security. | Passive Attack |
Luo et al. [147] | Proposed a dynamic watermark verification mechanism. | System-Level |
Shang et al. [148] | Designed a lightweight IoT authentication protocol. | System-Level |
Xue et al. [150] | Built a forward-secure blockchain sharing framework. | System-Level |
Parameter | Traditional Encryption Methods | Deep Learning Methods |
---|---|---|
Operation Method | Chaotic mapping is integrated to permutation, substitute, and diffuse the image pixels. | Neural networks are extensively trained on image datasets to learn encryption functions or to generate encryption keys. |
Adaptability | Static encryption, image-specific features not considered. | Adaptive to image features, learns parameters from data distribution [163] |
Security | Attack-prone; key security dependent. | Nonlinear and adaptive encryption enhances security; resistant to known attacks [164] |
Efficiency | Low computation. | High training cost, real-time encryption after training [165,166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Feng, X.; Sun, J.; Yan, P. Chaotic Image Security Techniques and Developments: A Review. Mathematics 2025, 13, 1976. https://doi.org/10.3390/math13121976
Zhang H, Feng X, Sun J, Yan P. Chaotic Image Security Techniques and Developments: A Review. Mathematics. 2025; 13(12):1976. https://doi.org/10.3390/math13121976
Chicago/Turabian StyleZhang, Hao, Xiufang Feng, Jingyu Sun, and Pengfei Yan. 2025. "Chaotic Image Security Techniques and Developments: A Review" Mathematics 13, no. 12: 1976. https://doi.org/10.3390/math13121976
APA StyleZhang, H., Feng, X., Sun, J., & Yan, P. (2025). Chaotic Image Security Techniques and Developments: A Review. Mathematics, 13(12), 1976. https://doi.org/10.3390/math13121976