Risk Measure Examination for Large Losses
Abstract
:1. Introduction
2. Preparation and Literature Review
2.1. Notation and Risk Measure Characteristics
2.2. Risk Measures
2.3. Optimization and Dynamic Risk Management
2.4. Sensitivity to Losses and Large Losses
“… defined on a suitable domain of random variables over a probability space (Ω, F, P). Here, the elements of X represent positions, wealth, etc. R and U are assumed to be monotone and normalized, implying that a position with a worse loss profile has higher risk/lower utility and the risk/utility of the null position is set to zero by convention. Consequently, we cover a very wide spectrum of concrete functionals, including convex and nonconvex risk measures, concave and S-shaped expected utility functionals, and OCE functionals. Each risk or utility functional can be naturally associated with a corresponding utility or risk functional through… Let S ⊂ X. A risk functional R or a utility functional U is sensitive to losses on S if, for every X ∈ S with P(X < 0) > 0, we have R(X) > 0 and respective U(X) < 0. It is called sensitive to large losses on S if, for every X ∈ S with P(X < 0) > 0, λX ∈ (0, ∞) exists such that R(λX) > 0 and respective U(λX) < 0, for each λ ∈ (λX, ∞). …”
2.5. Regulatory Framework
2.6. Risk—Sharing
3. Sensitivity to Large Losses
3.1. Small Probability of Large Loss and Its Effect on CE
3.2. Large—Loss Sensitivity
3.3. Interpretation of Large—Loss Sensitivity
3.4. Policy Implications
3.5. Limitation
4. Risk Sharing
4.1. Risk Sharing for Large Losses
4.2. Interpretation and Implication
- A predefined risk-sharing rule determines each individual’s initial burden .
- After the loss realization, the total burden () is adjusted to match the actual losses (Xi).
- The difference is redistributed based on marginal sensitivity weights ().
- This approach combines predefined allocation with post-adjustment, making it a practical and flexible risk-sharing mechanism.
- More substantially, for example, using Table 3, in case , is used since , , and is as below:
5. Other Related Topics
5.1. Elicitability
5.2. Expectiles
5.3. Large Losses and Pooling Discussions Related to Elicitability and Expectiles
5.4. Worst-Case Risk
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herdegen, M.; Khan, N.; Munari, C. Risk, utility and sensitivity to large losses. arXiv 2024, arXiv:2405.12154. [Google Scholar] [CrossRef]
- Miller, C.; Yang, I. Optimal control of conditional value-at-risk in continuous time. SIAM J. Control Optim. 2017, 55, 856–884. [Google Scholar] [CrossRef]
- Sarver, T. Dynamic mixture-averse preferences. Econometrica 2018, 86, 1347–1382. [Google Scholar] [CrossRef]
- Veraguas, J.B.; Reppen, A.M.; Tangpi, L. Stochastic control of optimized certainty equivalents. arXiv 2020, arXiv:2001.10108. [Google Scholar] [CrossRef]
- Bensalem, S.; Hernández-Santibáñez, N.; Kazi-Tani, N. A continuous-time model of self-protection. Financ. Stoch. 2023, 27, 503–537. [Google Scholar] [CrossRef]
- Müller, A. Certainty equivalents as risk measures. Braz. J. Probab. Stat. 2007, 21, 1–12. Available online: https://www.jstor.org/stable/43601086 (accessed on 10 May 2025).
- Ben-Tal, A.; Teboulle, M. An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Financ. 2007, 17, 449–476. [Google Scholar] [CrossRef]
- Xu, W.; Gao, X.; He, X. Regret bounds for Markov decision processes with recursive optimized certainty equivalents. In Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA, 23–29 July 2023; Volume 202, pp. 38400–38427. Available online: https://proceedings.mlr.press/v202/xu23d.html (accessed on 10 May 2025).
- Symann, P. Risk measures based on behavioral certainty equivalents. SSRN 2024. [Google Scholar] [CrossRef]
- Castagnoli, E.; Cattelan, G.; Maccheroni, F.; Tebaldi, C.; Wang, R. Star-shaped risk measures. arXiv 2022, arXiv:2022.2303. [Google Scholar] [CrossRef]
- Herdegen, M.; Khan, N. ρ-arbitrage and ρ-consistent pricing for star-shaped risk measures. arXiv 2024, arXiv:2202.07610. [Google Scholar] [CrossRef]
- Carlo, A.; Seandl, G. Liquidity risk theory and coherent measures of risk. Quant. Financ. 2008, 8, 681–692. [Google Scholar] [CrossRef]
- Lacker, D. Liquidity, Risk Measures, and Concentration of Measure. Math. Oper. Res. 2018, 43, 813–837. [Google Scholar] [CrossRef]
- Geissel, S.; Sass, J.; Seifried, F.T. Optimal expected utility risk measures. SSRN 2017. Available online: https://ssrn.com/abstract=2651132 (accessed on 10 May 2025).
- Giesecke, K.; Schmidt, T.; Weber, S. Measuring the risk of large losses. J. Investig. Manag. 2008, 6, 1–15. Available online: https://ssrn.com/abstract=810886 (accessed on 10 May 2025).
- Han, X.; Lin, L.; Wang, H.; Wang, R. Diversification quotient based on expectiles. arXiv 2024, arXiv:2411.14646v2. [Google Scholar] [CrossRef]
- Fissler, T.; Liu, F.; Wang, R.; Wei, L. Elicitability and identifiability of tail risk measures. arXiv 2024, arXiv:2404.14136v2. [Google Scholar] [CrossRef]
- Ince, A.; Moresco, M.; Peri, H.; Pesenti, S.M. Constructing elicitable risk measure. arXiv 2025, arXiv:2503.03471v1. [Google Scholar] [CrossRef]
- Cherny, A.S.; Kupper, M. Divergence utilities. SSRN 2007. [Google Scholar] [CrossRef]
- Li, J.Y.-M. Closed-Form Solutions for Worst-Case Law Invariant Risk Measures with Application to Robust Portfolio Optimization. Oper. Res. 2018, 66, 1533–1541. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Y.; Mao, T. An extreme worst-case risk measure by expectile. Adv. Appl. Probab. 2024, 56, 1195–1214. [Google Scholar] [CrossRef]
- Gai, J.; Liu, F.; Yin, M. Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications t robust reinsurance. Eur. J. Oper. Res. 2024, 318, 310–326. [Google Scholar] [CrossRef]
- Han, X.; Lin, L.; Wang, R. Diversification quotients: Quantifying diversification via risk. arXiv 2024, arXiv:2206.13679v6. [Google Scholar] [CrossRef]
- Arzner, P.; Delbaen, F.; Eber, J.-M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Föllmer, H.; Sched, A. Convex measures of risk and trading constraints. Financ. Stoch. 2002, 6, 429–447. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Coherent approaches to risk in optimization under uncertainty. In TutORials in Operations Research; INFORMS: Catonsville, MD, USA, 2014; pp. 38–61. [Google Scholar] [CrossRef]
- Kusuoka, M. Measuring Financial Risks: One Period Model; Institute of Actuaries of Japan and CERA Seminar: Tokyo, Japan, 2016; Available online: https://jarip.org/publication/risk_and_insurance/pdf/RI_v13_003s.pdf (accessed on 10 May 2025).
- Sadana, U.; Delage, E.; Georghiou, A. Mitigating optimistic bias in entropic risk estimation and optimization with an application to insurance. arXiv 2024, arXiv:2409.19926. [Google Scholar]
- Martin, J.; Villeneuve, S. Risk-sharing and optimal contracts with large exogenous risks. Decis. Econ. Financ. 2023, 46, 1–43. [Google Scholar] [CrossRef]
- Laeven, R.J.A.; Gianin, E.R.; Zullino, M. Dynamic Return and Star-Shaped Risk Measures via BSDEs. arXiv 2023, arXiv:2307.03447v2. [Google Scholar] [CrossRef]
- Ikefuji, M.; Laeven, R.; Magnus, J.; Muris, C. Pareto Utility. Theory Decis. 2013, 75, 43–57. [Google Scholar] [CrossRef]
- Ikefuji, M.; Laeven, R.; Magnus, J.; Muris, C. Expected Utility and Catastrophic Risk; Tinbergen Institute Discussion Paper; TI 2014-133/III; Tinbergen Institute: Amsterdam, The Netherlands, 2014; Available online: https://papers.tinbergen.nl/14133.pdf (accessed on 10 May 2025).
- Ikefuji, M.; Laeven, R.; Magnus, J.; Muris, C. Expected utility and catastrophic risk in a stochastic economy–climate model. J. Econom. 2020, 214, 110–129. [Google Scholar] [CrossRef]
- Armstrong, J.; Brigo, D. Risk managing tail-risk seekers: VaR and expected shortfall vs S-shaped utility. J. Bank. Financ. 2019, 101, 122–135. [Google Scholar] [CrossRef]
- Yamashita, M. Entropy as an indicator for risk sharing pool quality. J. Math. Financ. 2025, 15, 83–101. [Google Scholar] [CrossRef]
- Feng, R.; Liu, M.; Zhang, N. Unified theory of decentralized insurance. SSRN 2022. [Google Scholar] [CrossRef]
- Denuit, M.; Dhaene, J.; Robert, C.Y. Risk-sharing rules and their properties, with applications to peer-to-peer insurance. J. Risk Insur. 2022, 89, 615–667. [Google Scholar] [CrossRef]
- Denuit, M.; Dhaene, J. Convex order and comonotonic conditional mean risk sharing. Insur. Math. Econ. 2012, 51, 265–270. [Google Scholar] [CrossRef]
- Denuit, M.; Robert, C.Y. From risk sharing to pure premium for a large number of heterogeneous losses. Insur. Math. Econ. 2021, 96, 116–126. [Google Scholar] [CrossRef]
- Denuit, M.; Robert, C.Y. Risk sharing under the dominant peer-to-peer property and casualty insurance business models. Risk Manag. Insur. Rev. 2021, 24, 181–205. [Google Scholar] [CrossRef]
- Denuit, M.; Robert, C.Y. Conditional mean risk sharing in the individual model with graphical dependencies. Annu. Actuar. Sci. 2021, 16, 183–209. [Google Scholar] [CrossRef]
- Anthropelos, M.; Feng, R.; Kim, S. On the expansion of risk pooling. SSRN 2024. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4883838 (accessed on 10 May 2025).
- Mahul, O. Efficient risk sharing with a catastrophe insurance pool. In Proceedings of the NBER Insurance Project Workshop, Cambridge, MA, USA, 31 January–1 February 2003; Available online: https://hal.science/hal-01952094v1 (accessed on 10 May 2025).
- Benfield, A. Natural Disaster Risk; Report to Financial Services Agency: Tokyo, Japan, 2012. Available online: https://www.fsa.go.jp/common/about/research/20120706.html (accessed on 10 May 2025).
- Svensson, L.E.O. Optimal Policy with Low-Probability Extreme Events; NBER Working Paper Series, Working Paper 10196; NBER: Cambridge, MA, USA, 2003; Available online: http://www.nber.org/papers/w10196 (accessed on 10 May 2025).
- Chaudhry, S.J.; Hand, M.; Kunreuther, H. Broad bracketing for low probability events. J. Risk Uncertain. 2020, 61, 211–244. [Google Scholar] [CrossRef]
- Maccheroni, F.; Marinacci, M.; Rustichini, A. Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 2006, 74, 1447–1498. [Google Scholar] [CrossRef]
- Nendel, M.; Riedel, F.; Schmeck, M. A decomposition of general premium principles into risk and deviation. Insur. Math. Econ. 2021, 100, 193–209. [Google Scholar] [CrossRef]
- Burzoni, M.; Munari, M.; Wang, R. Adjusted expected shortfall. J. Bank. Financ. 2022, 134, 106297. [Google Scholar] [CrossRef]
- Aase, K.K. Perspectives of Risk Sharing. Scand. Actuar. J. 2002, 2, 73–128. [Google Scholar] [CrossRef]
- Aase, K.K. Optimal Risk Sharing in Society. Mathematics 2023, 10, 161. [Google Scholar] [CrossRef]
- Embrechts, P.; Haiyan, L.; Ruodu, W. Quantile-Based Risk Sharing. Oper. Res. 2018, 66, 936–949. Available online: https://www.jstor.org/stable/10.2307/48748452 (accessed on 10 May 2025). [CrossRef]
- Mao, T.; Wang, R. Risk aversion in regulatory capital principles. SIAM J. Financ. Math. 2020, 11, 169–200. [Google Scholar] [CrossRef]
- Niakh, F.A. A fixed point approach for computing actuarially fair Pareto optimal risk-sharing rules. Eur. Actuar. J. 2025, 15, 297–334. [Google Scholar] [CrossRef]
- Denuit, M.; Robert, C.Y. Large-loss behavior of conditional mean risk sharing. Astin Bull. 2020, 50, 1–3. [Google Scholar] [CrossRef]
- Boonen, T.J.; Chong, W.F.; Ghossoub, M. Pareto-efficient risk sharing in centralized insurance markets with application to flood risk. J. Risk Insur. 2024, 91, 449–488. [Google Scholar] [CrossRef]
- Embrechts, P.; Mao, T.; Wang, Q.; Wang, R. Bayes risk, elicitability, and the expected shortfall. Math. Financ. 2021, 31, 1190–1217. [Google Scholar] [CrossRef]
- Fissler, T.; Pesenti, S.M. Sensitivity measures based on scoring functions. Eur. J. Oper. Res. 2023, 307, 1408–1423. [Google Scholar] [CrossRef]
- Osband, K.H. Providing Incentives for Better Cost Forecasting. Ph.D. Thesis, University of California Berkeley, Berkeley, CA, USA, 2021. [Google Scholar]
- Lambert, N.S.; Pennock, D.M.; Shoham, Y. Eliciting properties of probability distributions. In Proceedings of the 9th ACM Conference on Electronic Commerce, Chicago, IL, USA, 8–12 July 2008; ACM: New York, NY, USA, 2008; pp. 129–138. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction and estimation. J. Am. Stat. Assoc. 2007, 102, 359–378. [Google Scholar] [CrossRef]
- Newey, W.; Powell, J. Asymmetric least squares estimation and testing. Econometrica 1987, 55, 819–847. [Google Scholar] [CrossRef]
- Bellini, F.; Klar, B.; Muller, A.; Rosazza Gianin, E. Generalized quantiles as risk measures. Insur. Math. Econ. 2014, 54, 41–48. [Google Scholar] [CrossRef]
- Emmer, S.; Kraz, M.; Tasche, D. What is the best risk measure in practice? A comparison of standard measures. J. Risk 2015, 18, 31–60. [Google Scholar] [CrossRef]
- Neyman, E.; Roughgarden, T. From proper scoring rules to max-min optimal forecast aggregation. Oper. Res. 2023, 71, 2175–2195. [Google Scholar] [CrossRef]
- Ziegel, J.F. Coherence and elicitability. Math. Financ. 2016, 26, 901–918. [Google Scholar] [CrossRef]
- Kusuoka, S. On law invariant coherent risk measures. Adv. Math. Econ. 2001, 3, 83–95. [Google Scholar] [CrossRef]
- Fadina, T.; Liu, Y.; Wang, R. A framework for measures of risk under uncertainty. Financ. Stoch. 2024, 28, 363–390. [Google Scholar] [CrossRef]
Shape of Utility | OCE | |
---|---|---|
a. | ||
b. | ||
c. | (=CVaR(X)) | |
d. |
Shape of Utility | DV | cf. |
---|---|---|
Shape of Utility | OEU | |
---|---|---|
a. | , x > 0 | |
b. | ||
c. | ||
d. | ||
e. | ||
f. | () |
Shape of Utility | USBR |
---|---|
Risk Measures | Sensitive to Large Losses? | Condition for Yes. | |
---|---|---|---|
a. | VaR/CVaR | Yes for special cases. | If they are either properly adjusted or if the property is suitably localized. |
b. | CE | Yes for a special case. | Negatively star shaped and |
c. | OCE DV OEU USBR | Yes for many cases. Valid for nonconcave utilities. | Risk of scalar multiplied is infinite or true below. u(x) < x and; . |
d. | Cash Additive | Yes for a special case. | When the risk is sup(−X). |
e. | Star-Shaped | Yes for many cases. | - |
Ex-Ante Burden | Actual Each Participant Loss Size | Risk-Sharing with Same Sensitivity (Case A) | Case B Sensitivity Weights | Risk-Sharing (Case B) | |
---|---|---|---|---|---|
#1 Participant | 10 | 30 | 30 | 20% | 22 |
#2 Participant | 5 | 15 | 25 | 20% | 17 |
#3 Participant | 15 | 45 | 35 | 60% | 51 |
Total | 30 | 90 | 90 | 100% | 90 |
Coherence | Elicitability | |
---|---|---|
Variance | X | X |
VaR | X | O |
CVaR (ES) | O | X |
) | O | O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, M. Risk Measure Examination for Large Losses. Mathematics 2025, 13, 1974. https://doi.org/10.3390/math13121974
Yamashita M. Risk Measure Examination for Large Losses. Mathematics. 2025; 13(12):1974. https://doi.org/10.3390/math13121974
Chicago/Turabian StyleYamashita, Miwaka. 2025. "Risk Measure Examination for Large Losses" Mathematics 13, no. 12: 1974. https://doi.org/10.3390/math13121974
APA StyleYamashita, M. (2025). Risk Measure Examination for Large Losses. Mathematics, 13(12), 1974. https://doi.org/10.3390/math13121974