Approximation of Two Systems of Radical Functional Equations Related to Quadratic and Quartic Mappings
Abstract
:1. Introduction and Preliminaries
- (i)
- for all and integers k;
- (ii)
- If is continuous, then for all .
- (i)
- for all and integers k;
- (ii)
- If is continuous, then for all .
2. Representation of Multi-Radical Quadratic (Quartic) Mappings
3. Stability Results for Multi-Radical Quadratic (Quartic) Mappings
- (H1)
- Consider to be an operator such that
- (H2)
- Let be an operator defined through
3.1. Stability Results for Multi-Radical Quadratic Mappings
3.2. Stability Results for Multi-Radical Quartic Mappings
4. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematic, Science Editions; John Wiley & Sons, Inc.: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Skof, F. Proprieta locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 1983, 53, 113–129. [Google Scholar] [CrossRef]
- Czerwik, S. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg. 1992, 62, 59–64. [Google Scholar] [CrossRef]
- Aczel, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Amir, D. Characterizations of Inner Product Spaces; Dirkhiiuser-Verlag: Basel, Switzerland, 1986. [Google Scholar]
- Lee, S.; Im, S.; Hwang, I. Quartic functional equations. J. Math. Anal. Appl. 2005, 307, 387–394. [Google Scholar] [CrossRef]
- Khodaei, H.; Gordji, M.E.; Kim, S.S.; Cho, Y.J. Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. 2012, 397, 284–297. [Google Scholar] [CrossRef]
- EL-Fassi, I. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. Racsam 2019, 113, 675–687. [Google Scholar] [CrossRef]
- EL-Fassi, I. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J. Math. Anal. Appl. 2017, 455, 2001–2013. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Ghazanfari, A.G. On the stability of a radical cubic functional equation in quasi-β-spaces. J. Fixed Point Theory Appl. 2016, 18, 843–853. [Google Scholar] [CrossRef]
- Abbasbeygi, Z.; Bodaghi, A.; Gharibkhajeh, A. On an equation characterizing multi-quartic mappings and its stability. Int. J. Nonlinear Anal. Appl. 2022, 13, 991–1002. [Google Scholar]
- Bodaghi, A.; Park, C.; Yun, S. Almost multi-quadratic mappings in non-Archimedean spaces. Aims Math. 2020, 5, 5230–5239. [Google Scholar] [CrossRef]
- Bodaghi, A. Functional inequalities for generalized multi-quadratic mappings. J. Inequ. Appl. 2021, 2021, 145. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, X.; Pang, C.-T. Solution and stability of the multiquadratic functional equation. Abstr. Appl. Anal. 2013, 8, 415053. [Google Scholar] [CrossRef]
- Bodaghi, A.; Park, C.; Mewomo, O.T. Multiquartic functional equations. Adv. Differ. Equ. 2019, 2019, 312. [Google Scholar] [CrossRef]
- Ciepliński, K. On the generalized Hyers-Ulam stability of multi-quadratic mappings. Comput. Math. Appl. 2011, 62, 3418–3426. [Google Scholar] [CrossRef]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality; Birkhauser Verlag: Basel, Switzerland, 2009. [Google Scholar]
- Kuczma, M. Functional Equations in a Single Variable (Mathematics Monographs); PWN—Polish Scientific Publishers: Warsaw, Poland, 1968. [Google Scholar]
- Park, C.-G. Multi-quadratic mappings in Banach spaces. Proc. Am. Math. Soc. 2002, 131, 2501–2504. [Google Scholar] [CrossRef]
- Cădariu, L.; Radu, V. Fixed points and the stability of quadratic functional equations. An. Univ. Timişoara, Ser. Mat. Inform. 2003, 41, 25–48. [Google Scholar]
- Brzdék, J.; Chudziak, J.; Palxexs, Z. A fixed point approach to stability of functional equations. Nonlinear Anal. 2011, 74, 6728–6732. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Ciepliński, K.; Olko, J. On an equation characterizing multi-additive-quadratic mappings and its Hyers-Ulam stability. Appl. Math. Comput. 2015, 265, 448–455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsahli, G.; Bodaghi, A. Approximation of Two Systems of Radical Functional Equations Related to Quadratic and Quartic Mappings. Mathematics 2025, 13, 1954. https://doi.org/10.3390/math13121954
Alsahli G, Bodaghi A. Approximation of Two Systems of Radical Functional Equations Related to Quadratic and Quartic Mappings. Mathematics. 2025; 13(12):1954. https://doi.org/10.3390/math13121954
Chicago/Turabian StyleAlsahli, Ghaziyah, and Abasalt Bodaghi. 2025. "Approximation of Two Systems of Radical Functional Equations Related to Quadratic and Quartic Mappings" Mathematics 13, no. 12: 1954. https://doi.org/10.3390/math13121954
APA StyleAlsahli, G., & Bodaghi, A. (2025). Approximation of Two Systems of Radical Functional Equations Related to Quadratic and Quartic Mappings. Mathematics, 13(12), 1954. https://doi.org/10.3390/math13121954