Application of Convolutional Neural Networks in Animal Husbandry: A Review
Abstract
1. Introduction
2. Relationship Among CNNs, Computer Vision, and Livestock Welfare
- (a)
- CNNs are the core computational models extracting patterns such as body posture and disease signs from raw images.
- (b)
- Computer vision systems use CNNs to automate monitoring tasks.
- (c)
- Improved computer vision performance, enabled by accurate CNN models, leads to enhanced livestock welfare through early detection of problems and optimized animal care.
- (1)
- Freedom from hunger and thirst.
- (2)
- Freedom from discomfort.
- (3)
- Freedom from pain, injury, or disease.
- (4)
- Freedom to express normal behavior.
- (5)
- Freedom from fear and distress.
3. Fundamentals of CNNs
4. Application of CNNs in Livestock Health Monitoring
- (a)
- Difficulties in obtaining labeled datasets of healthy and unhealthy animals.
- (b)
- Occlusions and noise such as dirt, lighting, and crowding affect the quality of images needed by CNNs.
- (c)
- Models trained on one farm may not generalize to others due to breed, environment, etc.
- (d)
- Requires edge computing or robust cloud infrastructure for real-time deployment.
5. CNN Applications in Livestock Behavior Classification and Monitoring
6. Livestock Management Through Localization and Tracking
7. Detection and Classification of Livestock Diseases
8. Challenges in Applying CNNs in Animal Husbandry
- (a)
- Limited species coverage;
- (b)
- Data scarcity and quality issues;
- (c)
- Technical challenges in model development;
- (d)
- Integration with other technologies;
- (e)
- Ethical and welfare considerations;
- (f)
- Lack of standardization;
- (g)
- Underutilization in real-time monitoring.
9. Conclusions
- (a)
- Infrastructure limitations on farms;
- (b)
- High cost and complexity;
- (c)
- Data collection and annotation challenges;
- (d)
- Environmental variability;
- (e)
- Generalization and robustness issues;
- (f)
- Preference for simpler solutions.
Author Contributions
Funding
Conflicts of Interest
References
- Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D., Jr.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and applications of convolutional neural network-based computer vision systems in animal farming: A review. Sensors 2021, 21, 1492. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Mora, L.; Reig, M. Current developments in meat by-products. In New Aspects of Meat Quality; Woodhead Publishing: Sawston, UK, 2022; pp. 649–665. [Google Scholar]
- Derbib, T.; Daru, G.; Kehali, S.; Alemu, S. The Role of Working Animals and Their Welfare Issues in Ethiopia: A Systematic Review and Meta-Analysis. Vet. Med. Int. 2024, 2024, 7031990. [Google Scholar] [CrossRef] [PubMed]
- FAS.USDA.GOV. Available online: https://www.fas.usda.gov/data/production/commodity/0111000?utm_source/ (accessed on 5 May 2025).
- Mehrabi, Z.; Gill, M.; Wijk, M.V.; Herrero, M.; Ramankutty, N. Livestock policy for sustainable development. Nat. Food 2020, 1, 160–165. [Google Scholar] [CrossRef]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Holman, B.W. Sustainability II: Sustainable animal production and meat processing. In Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2023; pp. 727–798. [Google Scholar]
- Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT technologies for livestock management: A review of present status, opportunities, and future trends. Big Data Cogn. Comput. 2021, 5, 10. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Gras, M.A.; Untea, A.E.; Lefter, N.A.; Rotar, M.C. Advancing livestock technology: Intelligent systemization for enhanced productivity, welfare, and sustainability. AgriEngineering 2024, 6, 1479–1496. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial intelligence and sensor innovations: Enhancing livestock welfare with a human-centric approach. Hum. Centric Intell. Syst. 2024, 4, 77–92. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, A.K. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Adv. 2024, 7, 100277. [Google Scholar] [CrossRef]
- Bhaskaran, H.S.; Gordon, M.; Neethirajan, S. Development of a cloud-based IoT system for livestock health monitoring using AWS and python. Smart Agric. Technol. 2024, 9, 100524. [Google Scholar] [CrossRef]
- Bello, R.W.; Mohamed, A.S.A.; Talib, A.Z.; Sani, S.; Ab Wahab, M.N. Behavior recognition of group-ranched cattle from video sequences using deep learning. Indian J. Anim. Res. 2022, 56, 505–512. [Google Scholar] [CrossRef]
- Gikunda, P.K.; Jouandeau, N. State-of-the-art convolutional neural networks for smart farms: A review. In Intelligent Computing: Proceedings of the 2019 Computing Conference; Springer International Publishing: Cham, Switzerland, 2019; Volume 1, pp. 763–775. [Google Scholar]
- Ferrante, G.S.; Rodrigues, F.M.; Andrade, F.R.; Goularte, R.; Meneguette, R.I. Understanding the state of the Art in Animal detection and classification using computer vision technologies. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 3056–3065. [Google Scholar]
- Kamilaris, A.; Prenafeta-Boldú, F.X. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018, 156, 312–322. [Google Scholar] [CrossRef]
- Fatoki, O.; Tu, C.; Hans, R.; Bello, R.W. Role of computer vision and deep learning algorithms in livestock behavioural recognition: A state-of-the-art-review. Edelweiss Appl. Sci. Technol. 2024, 8, 6416–6430. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Ellies-Oury, M.P.; Lherm, M.; Pineau, C.; Deblitz, C.; Farmer, L. Current situation and future prospects for beef production in Europe—A review. Asian Australas. J. Anim. Sci. 2018, 31, 1017. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Chatellier, V. Prospects for the European beef sector over the next 30 years. Anim. Front. 2011, 1, 20–28. [Google Scholar] [CrossRef]
- Drouillard, J.S. Current situation and future trends for beef production in the United States of America—A review. Asian Australas. J. Anim. Sci. 2018, 31, 1007. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Houe, H.; Denwood, M.; Nielsen, L.R.; Forkman, B.; Otten, N.D.; Agger, J.F. Application of methods to assess animal welfare and suffering caused by infectious diseases in cattle and swine populations. Animals 2021, 11, 3017. [Google Scholar] [CrossRef]
- Linstädt, J.; Thöne-Reineke, C.; Merle, R. Animal-based welfare indicators for dairy cows and their validity and practicality: A systematic review of the existing literature. Front. Vet. Sci. 2024, 11, 1429097. [Google Scholar] [CrossRef]
- Mandel, R.; Bracke, M.B.; Nicol, C.J.; Webster, J.A.; Gygax, L. Dairy vs beef production–expert views on welfare of cattle in common food production systems. Animal 2022, 16, 100622. [Google Scholar] [CrossRef]
- Ahsan, M.I.; Khan, M.B.; Das, M.; Akter, S. Poor hygiene, facilities, and policies at slaughterhouses: A key threat to public health and environment. Bangladesh J. Vet. Anim. Sci. 2020, 8, 1–9. [Google Scholar]
- Ovuru, K.F.; Izah, S.C.; Ogidi, O.I.; Imarhiagbe, O.; Ogwu, M.C. Slaughterhouse facilities in developing nations: Sanitation and hygiene practices, microbial contaminants and sustainable management system. Food Sci. Biotechnol. 2024, 33, 519–537. [Google Scholar] [CrossRef]
- Neethirajan, S. Affective state recognition in livestock—Artificial intelligence approaches. Animals 2022, 12, 759. [Google Scholar] [CrossRef] [PubMed]
- Olczak, K.; Penar, W.; Nowicki, J.; Magiera, A.; Klocek, C. The role of sound in livestock farming—Selected aspects. Animals 2023, 13, 2307. [Google Scholar] [CrossRef] [PubMed]
- Bello, R.W.; Mohamed, A.S.A.; Talib, A.Z. Cow image segmentation using mask R-CNN integrated with grabcut. In International Conference on Emerging Technologies and Intelligent Systems; Springer International Publishing: Cham, Switzerland, 2021; pp. 23–32. [Google Scholar]
- Dwyer, C.M. Can improving animal welfare contribute to sustainability and productivity? Black Sea J. Agric. 2020, 3, 61–65. [Google Scholar]
- Neethirajan, S. Artificial intelligence and sensor technologies in dairy livestock export: Charting a digital transformation. Sensors 2023, 23, 7045. [Google Scholar] [CrossRef]
- Victor, N.; Maddikunta, P.K.R.; Mary, D.R.K.; Murugan, R.; Chengoden, R.; Gadekallu, T.R.; Rakesh, N.; Zhu, Y.; Paek, J. Remote Sensing for Agriculture in the Era of Industry 5.0–A survey. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5920–5945. [Google Scholar] [CrossRef]
- Ecer, F.; Ögel, İ.Y.; Dinçer, H.; Yüksel, S. Assessment of Metaverse wearable technologies for smart livestock farming through a neuro quantum spherical fuzzy decision-making model. Expert Syst. Appl. 2024, 255, 124722. [Google Scholar] [CrossRef]
- Kleen, J.L.; Guatteo, R. Precision livestock farming: What does it contain and what are the perspectives? Animals 2023, 13, 779. [Google Scholar] [CrossRef]
- Wang, Y.; Mücher, S.; Wang, W.; Guo, L.; Kooistra, L. A review of three-dimensional computer vision used in precision livestock farming for cattle growth management. Comput. Electron. Agric. 2023, 206, 107687. [Google Scholar] [CrossRef]
- Bello, R.W.; Owolawi, P.A.; van Wyk, E.A.; Tu, C. Cattle Instance Segmentation by Transfer Learning Approach Using Deep Learning Models for Sustainable Livestock Farming; IntechOpen: London, UK, 2025. [Google Scholar] [CrossRef]
- Olubummo, D.A.; Bello, R.W. Computer visin-based precision livestock farming: An overview of the challenges and opportunities. World News Nat. Sci. 2024, 54, 26–37. [Google Scholar]
- Tedeschi, L.O.; Greenwood, P.L.; Halachmi, I. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. J. Anim. Sci. 2021, 99, skab038. [Google Scholar] [CrossRef]
- Oliveira, D.A.B.; Pereira, L.G.R.; Bresolin, T.; Ferreira, R.E.P.; Dorea, J.R.R. A review of deep learning algorithms for computer vision systems in livestock. Livest. Sci. 2021, 253, 104700. [Google Scholar] [CrossRef]
- Abd Aziz, N.S.N.; Daud, S.M.; Dziyauddin, R.A.; Adam, M.Z.; Azizan, A. A review on computer vision technology for monitoring poultry farm—Application, hardware, and software. IEEE Access 2020, 9, 12431–12445. [Google Scholar] [CrossRef]
- Ma, W.; Qi, X.; Sun, Y.; Gao, R.; Ding, L.; Wang, R.; Peng, C.; Zhang, J.; Wu, J.; Xu, Z.; et al. Computer vision-based measurement techniques for livestock body dimension and weight: A review. Agriculture 2024, 14, 306. [Google Scholar] [CrossRef]
- Jogin, M.; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature extraction using convolution neural networks (CNN) and deep learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar]
- Bello, R.W.; Olubummo, D.A.; Seiyaboh, Z.; Enuma, O.C.; Talib, A.Z.; Mohamed, A.S.A. Cattle identification: The history of nose prints approach in brief. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 594, p. 012026. [Google Scholar]
- Elngar, A.A.; Arafa, M.; Fathy, A.; Moustafa, B.; Mahmoud, O.; Shaban, M.; Fawzy, N. Image classification based on CNN: A survey. J. Cybersecur. Inf. Manag. 2021, 6, 18–50. [Google Scholar] [CrossRef]
- Xin, M.; Wang, Y. Research on image classification model based on deep convolution neural network. EURASIP J. Image Video Process. 2019, 2019, 40. [Google Scholar] [CrossRef]
- Bhatt, D.; Patel, C.; Talsania, H.; Patel, J.; Vaghela, R.; Pandya, S.; Modi, K.; Ghayvat, H. CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics 2021, 10, 2470. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Bello, R.W.; Mohamed, A.S.A.; Talib, A.Z. Contour extraction of individual cattle from an image using enhanced Mask R-CNN instance segmentation method. IEEE Access 2021, 9, 56984–57000. [Google Scholar] [CrossRef]
- Bello, R.W.; Mohamed, A.; Talib, A. Smart animal husbandry: A review of its data, applications, techniques, challenges and opportunities. SSRN Electron. J. 2022, 1–24. [Google Scholar] [CrossRef]
- Bello, R.W.; Talıb, A.Z.H.; Mohamed, A.S.A.B. Deep learning-based architectures for recognition of cow using cow nose image pattern. Gazi Univ. J. Sci. 2020, 33, 831–844. [Google Scholar] [CrossRef]
- Bello, R.W.; Oladipo, M.A. Mask YOLOv7-based drone vision system for automated cattle detection and counting. Artif. Intell. Appl. 2024, 2, 115–125. [Google Scholar] [CrossRef]
- Araújo, V.M.; Rili, I.; Gisiger, T.; Gambs, S.; Vasseur, E.; Cellier, M.; Diallo, A.B. AI-Powered Cow Detection in Complex Farm Environments. Smart Agric. Technol. 2025, 10, 100770. [Google Scholar] [CrossRef]
- Qin, Q.; Zhou, X.; Gao, J.; Wang, Z.; Naer, A.; Hai, L.; Alatan, S.; Zhang, H.; Liu, Z. YOLOv8-CBAM: A study of sheep head identification in Ujumqin sheep. Front. Vet. Sci. 2025, 12, 1514212. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Chen, C.; Zhu, W.; Norton, T. Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning. Comput. Electron. Agric. 2021, 187, 106255. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Ahmad, M.; Zhang, W.; Smith, M.; Brilot, B.; Bell, M. Real-time livestock activity monitoring via fine-tuned faster r-cnn for multiclass cattle behaviour detection. In Proceedings of the 2023 IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 12–14 October 2023; pp. 805–811. [Google Scholar]
- Myint, B.B.; Onizuka, T.; Tin, P.; Aikawa, M.; Kobayashi, I.; Zin, T.T. Development of a real-time cattle lameness detection system using a single side-view camera. Sci. Rep. 2024, 14, 13734. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Senthilkumar, C.; Vadivu, G.; Neethirajan, S. Early Detection of Lumpy Skin Disease in Cattle Using Deep Learning—A Comparative Analysis of Pretrained Models. Vet. Sci. 2024, 11, 510. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning; PMLR: London, UK, 2019; pp. 6105–6114. [Google Scholar]
- Otarashvili, L.; Subramanian, T.; Holmberg, J.; Levenson, J.J.; Stewart, C.V. Multispecies Animal Re-ID Using a Large Community-Curated Dataset. arXiv 2024, arXiv:2412.05602. [Google Scholar]
- Zhang, R.; Ji, J.; Zhao, K.; Wang, J.; Zhang, M.; Wang, M. A cascaded individual cow identification method based on DeepOtsu and EfficientNet. Agriculture 2023, 13, 279. [Google Scholar] [CrossRef]
- Howard, A.G. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Zhang, Y.; Li, X.; Sun, Y.; Xue, A.; Zhang, Y.; Jiang, H.; Shen, W. Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3. Smart Agric. 2024, 6, 29. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Polat, H.E.; Koc, D.G.; Ertuğrul, Ö.; Koç, C.; Ekinci, K. Deep Learning based Individual Cattle Face Recognition using Data Augmentation and Transfer Learning. J. Agric. Sci. 2025, 31, 137–150. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Xu, D.; Zhao, S.; Tan, H.; Liu, X. Non-contact measurement of pregnant sows’ backfat thickness based on a hybrid CNN-ViT model. Agriculture 2023, 13, 1395. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Yang, H.; Jiang, X.; Liu, J.; Wang, X.; Yang, H.; Yang, S. LAD-RCNN: A Powerful Tool for Livestock Face Detection and Normalization. Animals 2023, 13, 1446. [Google Scholar] [CrossRef]
- Bello, R.W.; Mohamed, A.S.A.; Talib, A.Z.; Olubummo, D.A.; Enuma, O.C. Computer vision-based techniques for cow object recognition. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 858, p. 012008. [Google Scholar]
- Gao, G.; Wang, C.; Wang, J.; Lv, Y.; Li, Q.; Ma, Y.; Zhang, X.; Li, Z.; Chen, G. CNN-Bi-LSTM: A complex environment-oriented cattle behavior classification network based on the fusion of CNN and Bi-LSTM. Sensors 2023, 23, 7714. [Google Scholar] [CrossRef]
- Qiao, Y.; Guo, Y.; Yu, K.; He, D. C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming. Comput. Electron. Agric. 2022, 193, 106650. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Huang, X.; Hu, Z.; Wang, X.; Yang, X.; Zhang, J.; Shi, D. An improved single shot multibox detector method applied in body condition score for dairy cows. Animals 2019, 9, 470. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ayadi, S.; Ben Said, A.; Jabbar, R.; Aloulou, C.; Chabbouh, A.; Achballah, A.B. Dairy cow rumination detection: A deep learning approach. In International Workshop on Distributed Computing for Emerging Smart Networks; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–139. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Moradeyo, O.M.; Olaniyan, A.S.; Ojoawo, A.O.; Olawale, J.A.; Bello, R.W. YOLOv7 applied to livestock image detection and segmentation tasks in cattle grazing behavior, monitor and intrusions. J. Appl. Sci. Environ. Manag. 2023, 27, 953–958. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Li, S.; Fu, L.; Sun, Y.; Mu, Y.; Chen, L.; Li, J.; Gong, H. Individual dairy cow identification based on lightweight convolutional neural network. PLoS ONE 2021, 16, e0260510. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Rohan, A.; Rafaq, M.S.; Hasan, M.J.; Asghar, F.; Bashir, A.K.; Dottorini, T. Application of deep learning for livestock behaviour recognition: A systematic literature review. Comput. Electron. Agric. 2024, 224, 109115. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Çevik, K.K. Deep learning based real-time body condition score classification system. IEEE Access 2020, 8, 213950–213957. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Zhang, K.; Li, D.; Huang, J.; Chen, Y. Automated video behavior recognition of pigs using two-stream convolutional networks. Sensors 2020, 20, 1085. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Singh, S.; Sharma, P.; Pal, N.; Sarma, D.K.; Tiwari, R.; Kumar, M. Holistic one health surveillance framework: Synergizing environmental, animal, and human determinants for enhanced infectious disease management. ACS Infect. Dis. 2024, 10, 808–826. [Google Scholar] [CrossRef]
- Mohan, A.; Raju, R.D.; Janarthanan, P. Animal disease diagnosis expert system using convolutional neural networks. In Proceedings of the 2019 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 21–22 February 2019; IEEE: Piscataway, NJ, USA; pp. 441–446. [Google Scholar]
- Zhang, K.; Han, S.; Wu, J.; Cheng, G.; Wang, Y.; Wu, S.; Liu, J. Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-Autoencoder. Comput. Electron. Agric. 2023, 213, 108252. [Google Scholar] [CrossRef]
- Lagua, E.B.; Mun, H.S.; Ampode, K.M.B.; Chem, V.; Kim, Y.H.; Yang, C.J. Artificial intelligence for automatic monitoring of respiratory health conditions in smart swine farming. Animals 2023, 13, 1860. [Google Scholar] [CrossRef]
- Perez, M.; Toler-Franklin, C. CNN-based action recognition and pose estimation for classifying animal behavior from videos: A survey. arXiv 2023, arXiv:2301.06187. [Google Scholar]
- Summerfield, G.I.; De Freitas, A.; van Marle-Koster, E.; Myburgh, H.C. Automated Cow Body Condition Scoring Using Multiple 3D Cameras and Convolutional Neural Networks. Sensors 2023, 23, 9051. [Google Scholar] [CrossRef]
- Weng, Z.; Meng, F.; Liu, S.; Zhang, Y.; Zheng, Z.; Gong, C. Cattle face recognition based on a Two-Branch convolutional neural network. Comput. Electron. Agric. 2022, 196, 106871. [Google Scholar] [CrossRef]
- Simitzis, P.; Tzanidakis, C.; Tzamaloukas, O.; Sossidou, E. Contribution of precision livestock farming systems to the improvement of welfare status and productivity of dairy animals. Dairy 2021, 3, 12–28. [Google Scholar] [CrossRef]
- Siegford, J.M.; Steibel, J.P.; Han, J.; Benjamin, M.; Brown-Brandl, T.; Dórea, J.R.; Morris, D.; Norton, T.; Psota, E.; Rosa, G.J. The quest to develop automated systems for monitoring animal behavior. Appl. Anim. Behav. Sci. 2023, 265, 106000. [Google Scholar] [CrossRef]
- Fuentes, A.; Han, S.; Nasir, M.F.; Park, J.; Yoon, S.; Park, D.S. Multiview monitoring of individual cattle behavior based on action recognition in closed barns using deep learning. Animals 2023, 13, 2020. [Google Scholar] [CrossRef]
- da Silva Santos, A.; de Medeiros, V.W.C.; Gonçalves, G.E. Monitoring and classification of cattle behavior: A survey. Smart Agric. Technol. 2023, 3, 100091. [Google Scholar] [CrossRef]
- Bai, Q.; Gao, R.; Li, Q.; Wang, R.; Zhang, H. Recognition of the behaviors of dairy cows by an improved YOLO. Intell. Robot. 2024, 4, 1–19. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 221–231. [Google Scholar] [CrossRef]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281–1289. [Google Scholar] [CrossRef]
- Yang, L.; Amin, O.; Shihada, B. Intelligent wearable systems: Opportunities and challenges in health and sports. ACM Comput. Surv. 2024, 56, 190. [Google Scholar] [CrossRef]
- Sadeghi, E.; Guo, Z.; Chiumento, A.; Havinga, P. Non-Invasive Monitoring of Vital Signs in Calves Using Thermal Imaging Technology. arXiv 2024, arXiv:2405.11532. [Google Scholar]
- Yin, M.; Ma, R.; Luo, H.; Li, J.; Zhao, Q.; Zhang, M. Non-contact sensing technology enables precision livestock farming in smart farms. Comput. Electron. Agric. 2023, 212, 108171. [Google Scholar] [CrossRef]
- García, M.G.; Molina, F.M.; Marín, C.P.; Marín, D.P. Potential for automatic detection of calving in beef cows grazing on rangelands from Global Navigate Satellite System collar data. Animal 2023, 17, 100901. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, S.K. Advanced contribution of IoT in agricultural production for the development of smart livestock environments. Internet Things 2023, 22, 100724. [Google Scholar] [CrossRef]
- Famuyiwa, A.S.; Dosunmu, O.P.; Jimi-Olatunji, D. Application of Computer-Based Techniques for Monitoring Animal Health, Behavior and Welfare: A Review. J. Appl. Sci. Environ. Manag. 2024, 28 (Suppl. S12B), 4277–4282. [Google Scholar]
- Mulrooney, K.; Harkness, A. Farm crime and security: Evaluating smart tag technology for preventing, tracking and recovering stolen livestock. Int. J. Rural. Criminol. 2023, 8, 107–123. [Google Scholar] [CrossRef]
- Qazi, A.; Razzaq, T.; Iqbal, A. AnimalFormer: Multimodal Vision Framework for Behavior-based Precision Livestock Farming. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–18 June 2024; pp. 7973–7982. [Google Scholar]
- Shafik, W. Barriers to implementing computational intelligence-based agriculture system. In Computational Intelligence in Internet of Agricultural Things; Springer Nature: Cham, Switzerland, 2024; pp. 193–219. [Google Scholar]
- Dayoub, M.; Shnaigat, S.; Tarawneh, R.A.; Al-Yacoub, A.N.; Al-Barakeh, F.; Al-Najjar, K. Enhancing animal production through smart agriculture: Possibilities, hurdles, resolutions, and advantages. Ruminants 2024, 4, 22–46. [Google Scholar] [CrossRef]
- Balasubramaniam, S.; Vijesh Joe, C.; Prasanth, A.; Kumar, K.S. Computer Vision Systems in Livestock Farming, Poultry Farming, and Fish Farming: Applications, Use Cases, and Research Directions. In Computer Vision in Smart Agriculture and Crop Management; Wiley: Hoboken, NJ, USA, 2025; pp. 221–258. [Google Scholar]
- Shaik, N.; Chitralingappa, P.; Krishna Priya, C.; Sumalatha, P.; Geetha Rani, K.; Harichandana, B.; Shaik, A.S. Deep Learning Approaches for Early Detection of Bovine Respiratory Diseases in Cattle. In International Symposium on Signal and Image Processing; Springer Nature: Singapore, 2024; pp. 227–239. [Google Scholar]
- Talebi, E.; Nezhad, M.K. Revolutionizing animal sciences: Multifaceted solutions and transformative impact of AI technologies. CABI Rev. 2024, 19. [Google Scholar] [CrossRef]
- Muhammad Saqib, S.; Iqbal, M.; Tahar Ben Othman, M.; Shahazad, T.; Yasin Ghadi, Y.; Al-Amro, S.; Mazhar, T. Lumpy skin disease diagnosis in cattle: A deep learning approach optimized with RMSProp and MobileNetV2. PLoS ONE 2024, 19, e0302862. [Google Scholar] [CrossRef]
- Degu, M.Z.; Simegn, G.L. Smartphone based detection and classification of poultry diseases from chicken fecal images using deep learning techniques. Smart Agric. Technol. 2023, 4, 100221. [Google Scholar] [CrossRef]
- Girmaw, D.W. Livestock animal skin disease detection and classification using deep learning approaches. Biomed. Signal Process. Control 2025, 102, 107334. [Google Scholar]
- Saha, D.K. An extensive investigation of convolutional neural network designs for the diagnosis of lumpy skin disease in dairy cows. Heliyon 2024, 10, e34242. [Google Scholar] [CrossRef] [PubMed]
- Machuve, D.; Nwankwo, E.; Mduma, N.; Mbelwa, J. Poultry diseases diagnostics models using deep learning. Front. Artif. Intell. 2022, 5, 733345. [Google Scholar] [CrossRef]
- Kellenberger, B.; Marcos, D.; Tuia, D. Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning. Remote Sens. Environ. 2018, 216, 139–153. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A study on the detection of cattle in UAV images using deep learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef]
- Bello, R.W.; Talib, A.Z.H.; Mohamed, A.S.A.B. Deep belief network approach for recognition of cow using cow nose image pattern. Walailak J. Sci. Technol. (WJST) 2021, 18, 8984. [Google Scholar] [CrossRef]
- Mao, A.; Huang, E.; Wang, X.; Liu, K. Deep learning-based animal activity recognition with wearable sensors: Overview, challenges, and future directions. Comput. Electron. Agric. 2023, 211, 108043. [Google Scholar] [CrossRef]
- Li, J.; Green-Miller, A.R.; Hu, X.; Lucic, A.; Mohan, M.M.; Dilger, R.N.; Condotta, I.C.; Aldridge, B.; Hart, J.M.; Ahuja, N. Barriers to computer vision applications in pig production facilities. Comput. Electron. Agric. 2022, 200, 107227. [Google Scholar] [CrossRef]
- Kumar, P.; Luo, S.; Shaukat, K. A Comprehensive Review of Deep Learning Approaches for Animal Detection on Video Data. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 1420–1437. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Tongson, E.; Dunshea, F.R. The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence. Anim. Health Res. Rev. 2022, 23, 59–71. [Google Scholar] [CrossRef] [PubMed]
CNNs Model | Applications for the Livestock Farming | Purpose | Benefits |
---|---|---|---|
YOLOv8 + CBAM | Cow detection in complex farm environments [51,52]. | Health monitoring, behavioral analysis, tracking and counting. | Fast, enhanced detection accuracy in challenging conditions, supports smart farming initiatives, real-time detection, and enables early intervention and automated monitoring. |
VGG16 [53] | Weight estimation from body images and animal classification in smart agriculture [54]. | Growth tracking and management and species and breed identification. | Non-invasive, consistent monitoring of growth patterns, high classification accuracy, and supports automated livestock management. |
Faster R-CNN [55] | Excretion detection in pigsties and lameness detection via gait analysis [56,57]. | Waste management and emission modeling. | Reliable detection of excretions, aids in environmental management, and detects movement anomalies early to prevent productivity loss. |
ResNet (e.g., ResNet50) [58] | Disease detection from skin/eye images [59]. | Disease diagnosis (e.g., pink eye). | Deep feature extraction improves accuracy and early disease detection. |
EfficientNet [60] | Multispecies animal classification from images [61,62]. | Breed recognition and sorting. | Efficient computation with high accuracy. |
MobileNet [63] | On-farm real-time behavior monitoring [64]. | Activity recognition (e.g., lying, feeding, etc.) | Lightweight and works on mobile/edge devices. |
DenseNet [65] | Facial recognition for animal ID [66]. | Automated identification. | Improves record keeping and reduces the need for physical tagging. |
CNN-ViT Hybrid | Backfat thickness measurement in sows [67]. | Body condition scoring and health monitoring. | High precision in measurements and facilitates optimal feeding strategies. |
LAD-RCNN | Livestock face detection and normalization [68]. | Individual identification. | Accurate face detection and angle normalization and improves animal tracking systems. |
Mask YOLOv7 | Automated livestock detection and counting [69]. | Welfare monitoring. | High accuracy and precision in detecting individual cattle. |
CNN-LSTM Hybrid | Behavior recognition in livestock [70]. | Activity monitoring. | Combines spatial and temporal data and improves understanding of animal behaviors. |
3D CNN/Time-distributed CNN | Behavior analysis using video sequences [71]. | Aggression detection and heat detection. | Uses temporal information and helps improve animal welfare. |
SSD (Single Shot Multibox Detector) [72] | Animal detection and counting, behavior monitoring, individual animal identification, health monitoring, and video surveillance [73]. | Real-time object detection, localization, and classification. | High speed, decent accuracy, multi-object detection, edge deployment friendly, and adaptability. |
R-CNN [74] | Animal detection and tracking, lameness detection, excretion zone detection, health monitoring, behavior recognition, and image-based classification [75]. | Object detection in complex environments, accurate localization, and foundation for automated monitoring. | High detection accuracy, fine-grained analysis, improved animal welfare, real-time monitoring (with Faster R-CNN), and compatibility with large datasets. |
Mask R-CNN [76] | Animal detection and counting, behavior monitoring, health monitoring, individual identification, body condition and morphometry, and welfare assessment [77]. | Object detection, instance segmentation, pose estimation, and feature extraction. | High precision segmentation, handles occlusion well, improved behavior tracking, and robustness in real-world conditions. |
AlexNet [78] | Breed classification, individual animal identification, health monitoring, behavior detection, and weight/body condition estimation [79]. | Image-based livestock classification and identification, health and condition monitoring, and behavior recognition. | Efficient feature learning, good performance with limited data, baseline model, and fast inference. |
LeNet [80] | Livestock species classification, feed behavior detection, individual ID using ear tags or markings, and health condition pre-screening [81]. | Baseline model with lightweight deployment, applied in early stages of livestock computer vision projects to validate dataset quality and classification feasibility. | Low computational cost, easy to implement and train, and effective for simple tasks. |
Inception/GoogLeNet (and variants) [82] | Animal identification, health monitoring, behavior recognition, weight estimation, and animal counting [83]. | To analyze images and video data for precision livestock monitoring, to perform automated identification, classification, and health assessment of animals, and to optimize resource management and improve animal welfare through data-driven insights. | Efficient feature extraction, low computational cost, high accuracy, and scalability. |
Inception-ResNet [84] | Animal identification, health monitoring, behavior recognition, and multi-species classification [85]. | High-accuracy feature extraction, improving model convergence, and handling multi-scale patterns. | Improved accuracy, faster convergence, better generalization, and scalability. |
Xception [86] | Behavior recognition, health monitoring, individual identification, and video segmentation. | Behavior recognition, health monitoring, and individual identification. | High accuracy, computational efficiency, and versatility. |
Architecture | Use Case | Notes |
---|---|---|
VGG16/VGG19 [53] | Basic behavior classification. | Simple, slower, and good for baseline. |
ResNet-50/101 [58] | Posture and action recognition. | Deeper networks and more accurate. |
YOLOv3/v4/v5 [99,100] | Real-time object detection of behaviors. | Fast inference, used with Darknet or PyTorch. (v1.1) |
Faster R-CNN [55] | Precise detection of behaviors/events. | Slower but more accurate. |
3D CNNs [101] | Video behavior classification. | Capture spatial + temporal info. |
OpenPose/DeepLabCut [102,103] | Keypoint detection and pose estimation. | For gait, posture, and locomotion analysis. |
Challenges | Description |
---|---|
Data annotation | Labor-intensive labeling of behavior data. |
Occlusion and clutter | Animals may overlap or hide each other in images. |
Lighting and environment | Variable lighting conditions affect accuracy. |
Generalization | CNNs trained in one farm may not generalize to others. |
Real-time processing | CNNs may need powerful hardware for continuous video analysis. |
Reference | Purpose | CNN Models Used | Performance Metrics |
---|---|---|---|
Saha [120] | Detection and classification of lumpy skin disease (LSD) in dairy cows. | MobileNetV2, DenseNet201, Xception, and InceptionResNetV2 | MobileNetV2 achieved 96% accuracy and 98% AUC; DenseNet201 achieved 94% accuracy; F1 scores up to 96%. |
Machuve et al. [121] | Diagnosis of poultry diseases such as Coccidiosis, Salmonella, and Newcastle using fecal images. | VGG16, InceptionV3, MobileNetV2, and Xception | After fine-tuning: MobileNetV2 achieved 98.02% accuracy; Xception achieved 98.24% accuracy; F1 scores above 75% for all classifiers. |
Degu and Simegn [118] | Detection and classification of poultry diseases using smartphone images. | YOLO-V3 for object detection and ResNet50 for classification | YOLO-V3 achieved 87.48% mean average precision for ROI detection; ResNet50 achieved 98.7% classification accuracy. |
Gao et al. [70] | Classification of cattle behaviors in complex environments. | CNN-Bi-LSTM (combination of CNNs and bi-directional LSTM) | Achieved 94.3% accuracy, 94.2% precision, and 93.4% recall; outperformed Mask R-CNN, CNN-LSTM, and EfficientNet-LSTM models. |
Girmaw [119] | Detection and classification of skin diseases in livestock such as cattle, sheep, and goats. | EfficientNetB7, MobileNetV2, and DenseNet201 | EfficientNetB7 achieved 99.01% accuracy; MobileNetV2 and DenseNet201 also demonstrated high performance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello, R.-W.; Ogundokun, R.O.; Owolawi, P.A.; van Wyk, E.A.; Tu, C. Application of Convolutional Neural Networks in Animal Husbandry: A Review. Mathematics 2025, 13, 1906. https://doi.org/10.3390/math13121906
Bello R-W, Ogundokun RO, Owolawi PA, van Wyk EA, Tu C. Application of Convolutional Neural Networks in Animal Husbandry: A Review. Mathematics. 2025; 13(12):1906. https://doi.org/10.3390/math13121906
Chicago/Turabian StyleBello, Rotimi-Williams, Roseline Oluwaseun Ogundokun, Pius A. Owolawi, Etienne A. van Wyk, and Chunling Tu. 2025. "Application of Convolutional Neural Networks in Animal Husbandry: A Review" Mathematics 13, no. 12: 1906. https://doi.org/10.3390/math13121906
APA StyleBello, R.-W., Ogundokun, R. O., Owolawi, P. A., van Wyk, E. A., & Tu, C. (2025). Application of Convolutional Neural Networks in Animal Husbandry: A Review. Mathematics, 13(12), 1906. https://doi.org/10.3390/math13121906