An Adaptive Evolutionary Causal Dynamic Factor Model
Abstract
1. Introduction
2. Literature Review
3. Adaptive Evolutionary Causal Dynamic Factor Model
3.1. Performing Feature Selection Based on Causality to Establish an Economic Variable Pool
3.2. Extracting the Dynamic Factors from the Economic Variable Pool
3.3. Adaptive Differential Evolution of Dynamic Factors
- (1)
- “DE/current to best/1”
- (2)
- “DE/current to rand/1”
- (3)
- “DE/rand/3”
- (4)
- “DE/best/1”
- (5)
- “DE/rand to best/1”
- (6)
- “DE/rand/2”
- (7)
- “DE/best/2”
- (8)
- “DE/best/3”
4. Experimental Data
5. Experimental Results
5.1. Construction of the Variable Pool
5.2. Factor-Adaptive Differential Evolution
- (1)
- All variables have at least 1 factor in addition to a global factor (i.e., each row has at least two values of 1);
- (2)
- At least one-third of the selected economic variables have the same factor (i.e., each column has at least N/3 1 values).
5.3. GDP Growth Rate Prediction Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Series ID | Series Name |
---|---|
M0000612 | Consumer price index (CPI) |
M0001385 | Money supply |
M0017126 | Purchase Management Index(PMI) |
M0001227 | Producer price index (PPI) |
M0001383 | Money supply |
M0000545 | Industrial production added |
S0029657 | Completed Investment in Real Estate Development |
M0001428 | Total Retail Sales of Consumer Goods |
M0000273 | Fixed assets investment (FAI) |
M0000607 | Value of Exports: year |
M5440435 | Infrastructure Investment |
M0000357 | FAI: manufacturing |
M0017128 | PMI: New Orders |
M0001384 | Broad Money (M2) |
M0017129 | PMI: New Export Orders |
M0017127 | PMI: Production |
M0000606 | Value of Exports |
M0017131 | PMI: Finished Product Inventory |
M0000609 | Value of Imports: year |
M0000616 | CPI: Food |
M0000561 | Industrial Enterprises: Finished Products |
M0001427 | Total Retail Sales of Consumer Goods |
M0009970 | Financial institutions: total loans |
M0009969 | Financial intermediaries: total loans |
M0017135 | PMI: Inventory of Raw Materials |
M0000138 | Non-official China PMI |
M0001382 | Narrow Money (M1) |
M0010049 | Foreign Exchange Reserves |
M0000613 | CPI: Non-food |
M0017134 | PMI: Prices of Purchased Materials |
M0000608 | Value of Imports |
M0043418 | Financial institutions: medium and long-term loans |
M0012303 | Consumer Confidence Index |
M5207464 | Industrial Enterprises: Total Profit |
M0000449 | Real Estate |
M0048236 | Non-manufacturing PMI |
M0017136 | PMI: Employment |
M0017137 | PMI: Speed of Supplier Deliveries |
S0027013 | Electricity Production: year |
M0017130 | PMI: Backlog of Orders |
M0001467 | Retail Sales: Vehicle |
M0001381 | Cash in circulation |
M0017133 | PMI: Imports |
M0001380 | M0 |
M0024054 | Government Revenue |
M0000556 | Industrial Enterprises: Total Profit |
M5207831 | Non-manufacturing PMI: Construction |
M5207838 | Non-manufacturing PMI: Service |
M0024055 | Government Expenditure |
M5206740 | PMI: Small Enterprises |
M0017132 | PMI: Quantity of Purchases |
M5525764 | Stock Aggregate Financing to the Real Economy: RMB Loans |
M0000729 | CPI: YTD |
M5206738 | PMI: Large Enterprises |
S0027012 | Electricity Production |
M5206739 | PMI: Medium-sized Enterprises |
M5530000 | EPMI |
M0000605 | Value of Imports and Exports |
M0001689 | Monetary Authority: Total Assets |
M0009940 | Financial intermediaries: total deposits |
M0001232 | PPI: Consumer Goods |
M0096879 | National Government-managed Fund Revenue |
S0027374 | Crude Steels |
M0000615 | CPI: Services |
M0024063 | Government Revenue |
M5786898 | Bulk Commodity Index |
M0001699 | Monetary Authority: Deposits of Government |
M0043411 | Financial intermediaries: fiscal deposits |
M0010039 | Average Exchange Rate: USD/CNY |
M0001461 | Retail Sales: Household Electrics and Video Appliances |
M0010131 | Money Multiplier |
M0000604 | Value of Imports and Exports |
M0043829 | Export Price Index (HS2): Total Index |
M0096212 | Value-added of Industry: Manufacturing |
M0024064 | Government Expenditure |
M0001364 | Producer Purchase Price Index |
M0000560 | Industrial Enterprises: Finished Products |
M0000614 | CPI: Consumer Goods |
M0000650 | CPI: Residence |
M5480389 | No. of New Employed Population in Urban Areas |
M0043413 | Financial intermediaries: savings deposits |
M0000429 | FAI: Transport, Storage and Post Service |
M0096211 | Value-added of Industry: Mining |
M0001690 | Monetary Authority: Reserve Money (Monetary Base) |
M0096883 | National Government-managed Fund Revenue |
M0041340 | Macro-economic Climate Index: Coincident Index |
M6096116 | No. of New Employed Population in Urban Areas |
M0012304 | Consumer Satisfaction Index |
M0089119 | Central Government Fiscal Revenue |
GDP | GDP: Constant Prices:year |
M5567889 | GDP: Constant Prices |
M6404533 | Leverage Rate of Household Sector |
M0000001 | GDP: Current Prices |
M6404532 | Leverage Rate of Non-Financial Sector |
M0012989 | Per Capita Disposable Income of Urban Households |
M5567903 | GDP: Constant Prices: Tertiary Industry |
M6404534 | Leverage Rate of Non-financial Corporations Sector |
M6347627 | GDP: Current Prices |
M6404535 | Leverage Rate of General Government Sector |
M5567901 | GDP: Constant Prices: Primary Industry |
M5567902 | GDP: Constant Prices: Secondary Industry |
M0058002 | Average CNY Loan Rates of Financial Institutions |
M0010096 | Excess Deposit Reserve Ratio: Financial Institutions |
M0011456 | Loan Demand Climate Index |
M5792266 | Industrial Capacity Utilization |
M0007446 | The Proportion of “More Savings” |
M0012988 | Per Capita Disposable Income of Urban Households |
M0002004 | Non-performing Loan Ratio |
M5481759 | National Per Capita Disposable Income |
M0007438 | Index of Future Income Confidence |
M6404537 | Leverage Rate of Local Government Sector |
M5481772 | National Per Capita Consumption Expenditure |
M0024136 | Urban Registered Unemployment Rate |
M5207466 | Future Employment Expectations Index |
References
- Shaw, E.S. Burns and Mitchell on Business Cycles. J. Political Econ. 1947, 55, 281–298. [Google Scholar] [CrossRef]
- Giannone, D.; Reichlin, L.; Small, D. Nowcasting: The real-time informational content of macroeconomic data. J. Monet. Econ. 2008, 55, 665–676. [Google Scholar] [CrossRef]
- Bańbura, M.; Modugno, M. Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. J. Appl. Econom. 2014, 29, 133–160. [Google Scholar] [CrossRef]
- Bok, B.; Caratelli, D.; Giannone, D.; Sbordone, A.M.; Tambalotti, A. Macroeconomic nowcasting and forecasting with big data. Annu. Rev. Econ. 2018, 10, 615–643. [Google Scholar] [CrossRef]
- Nakazawa, T. Constructing GDP Nowcasting Models Using Alternative Data (No. 22-E-9); Bank of Japan: Tokyo, Japan, 2022; pp. 1–39. [Google Scholar]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Wong, K.C.; Li, X. A self-adaptive weighted differential evolution approach for large-scale feature selection. Knowl.-Based Syst. 2022, 235, 107633. [Google Scholar] [CrossRef]
- Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soc. 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Kernel method for nonlinear Granger causality. Phys. Rev. Lett. 2008, 100, 144103. [Google Scholar] [CrossRef]
- Dhamala, M.; Rangarajan, G.; Ding, M. Estimating Granger causality from Fourier and wavelet transforms of time series data. Phys. Rev. Lett. 2008, 100, 018701. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [Google Scholar] [CrossRef] [PubMed]
- Staniek, M.; Lehnertz, K. Symbolic transfer entropy. Phys. Rev. Lett. 2008, 100, 158101. [Google Scholar] [CrossRef] [PubMed]
- Lobier, M.; Siebenhühner, F.; Palva, S.; Palva, J.M. Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. Neuroimage 2014, 85, 853–872. [Google Scholar] [CrossRef]
- Wollstadt, P.; Martínez-Zarzuela, M.; Vicente, R.; Díaz-Pernas, F.J.; Wibral, M. Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series. PLoS ONE 2014, 9, e102833. [Google Scholar] [CrossRef]
- Porfiri, M.; Ruiz Marín, M. Transfer entropy on symbolic recurrences. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 063123. [Google Scholar] [CrossRef] [PubMed]
- Restrepo, J.F.; Mateos, D.M.; Schlotthauer, G. Transfer entropy rate through Lempel-Ziv complexity. Phys. Rev. E 2020, 101, 052117. [Google Scholar] [CrossRef]
- Silini, R.; Masoller, C. Fast and effective pseudo transfer entropy for bivariate data-driven causal inference. Sci. Rep. 2021, 11, 8423. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, Y.; Zhang, Z.; Sun, P. Fourier-domain transfer entropy spectrum. Phys. Rev. Res. 2021, 3, L042040. [Google Scholar] [CrossRef]
- Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479. [Google Scholar]
- Mohamed, A.W.; Suganthan, P.N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Comput. 2018, 22, 3215–3235. [Google Scholar] [CrossRef]
- Sun, G.; Yang, B.; Yang, Z.; Xu, G. An adaptive differential evolution with combined strategy for global numerical optimization. Soft Comput. 2020, 24, 6277–6296. [Google Scholar] [CrossRef]
- Chen, X. Novel dual-population adaptive differential evolution algorithm for large-scale multi-fuel economic dispatch with valve-point effects. Energy 2020, 203, 117874. [Google Scholar] [CrossRef]
- Tarkhaneh, O.; Nguyen, T.T.; Mazaheri, S. A novel wrapper-based feature subset selection method using modified binary differential evolution algorithm. Inf. Sci. 2021, 565, 278–305. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Wang, P. Parameter and strategy adaptive differential evolution algorithm based on accompanying evolution. Inf. Sci. 2022, 607, 1136–1157. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, C. Two-stage differential evolution with novel parameter control. Inf. Sci. 2022, 596, 321–342. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Wang, Z.; Wei, J.; Chen, X.; Li, Q.; Zheng, Y.; Sheng, W. Adaptive memetic differential evolution with multi-niche sampling and neighborhood crossover strategies for global optimization. Inf. Sci. 2022, 583, 121–136. [Google Scholar] [CrossRef]
- Ghysels, E.; Santa-Clara, P.; Valkanov, R. There is a risk-return trade-off after all. J. Financ. Econ. 2005, 76, 509–548. [Google Scholar] [CrossRef]
- Ghysels, E.; Sinko, A.; Valkanov, R. MIDAS regressions: Further results and new directions. Econom. Rev. 2007, 26, 53–90. [Google Scholar] [CrossRef]
- Miller, J.I. Mixed-frequency cointegrating regressions with parsimonious distributed lag structures. J. Financ. Econom. 2014, 12, 584–614. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, Q.; Liang, J. A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets. Econ. Model. 2018, 68, 586–598. [Google Scholar] [CrossRef]
- Ghysels, E.; Qian, H. Estimating MIDAS regressions via OLS with polynomial parameter profiling. Econom. Stat. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Liu, M.; Lee, C.C. Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS. Resour. Policy 2022, 76, 102703. [Google Scholar] [CrossRef]
- Mariano, R.S.; Murasawa, Y. A coincident index, common factors, and monthly real GDP. Oxf. Bull. Econ. Stat. 2010, 72, 27–46. [Google Scholar] [CrossRef]
- Eraker, B.; Chiu, C.W.; Foerster, A.T.; Kim, T.B.; Seoane, H.D. Bayesian mixed frequency VARs. J. Financ. Econom. 2014, 13, 698–721. [Google Scholar] [CrossRef]
- Foroni, C.; Guérin, P.; Marcellino, M. Markov-switching mixed-frequency VAR models. Int. J. Forecast. 2015, 31, 692–711. [Google Scholar] [CrossRef]
- Schorfheide, F.; Song, D. Real-time forecasting with a mixed-frequency VAR. J. Bus. Econ. Stat. 2015, 33, 366–380. [Google Scholar] [CrossRef]
- Knotek, E.S., II; Zaman, S. Financial nowcasts and their usefulness in macroeconomic forecasting. Int. J. Forecast. 2019, 35, 1708–1724. [Google Scholar] [CrossRef]
- Jungbacker, B.; Koopman, S.J.; Van der Wel, M. Maximum likelihood estimation for dynamic factor models with missing data. J. Econ. Dyn. Control. 2011, 35, 1358–1368. [Google Scholar] [CrossRef]
- Forni, M.; Hallin, M.; Lippi, M.; Zaffaroni, P. Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. J. Econom. 2015, 185, 359–371. [Google Scholar] [CrossRef]
- Fiorentini, G.; Galesi, A.; Sentana, E. A spectral EM algorithm for dynamic factor models. J. Econom. 2018, 205, 249–279. [Google Scholar] [CrossRef]
- Glocker, C.; Kaniovski, S. Macroeconometric forecasting using a cluster of dynamic factor models. Empir. Econ. 2022, 63, 43–91. [Google Scholar] [CrossRef]
- Martínez-Hernández, I.; Gonzalo, J.; González-Farías, G. Nonparametric estimation of functional dynamic factor model. J. Nonparametr. Stat. 2022, 34, 895–916. [Google Scholar] [CrossRef]
- Zhang, H.G.; Su, C.W.; Song, Y.; Qiu, S.; Xiao, R.; Su, F. Calculating Value-at-Risk for high-dimensional time series using a nonlinear random mapping model. Econ. Model. 2017, 67, 355–367. [Google Scholar] [CrossRef]
- Zhang, H.G.; Li, T. News-driven bubbles in futures markets. J. Energy Mark. 2023, 16, 55–78. [Google Scholar] [CrossRef]
- Zhang, H.G.; Wu, L.; Song, Y.; Su, C.W.; Wang, Q.; Su, F. An online sequential learning non-parametric value-at-risk model for high-dimensional time series. Cogn. Comput. 2018, 10, 187–200. [Google Scholar] [CrossRef]
Symbols of Model | Implication |
---|---|
The observable variable to be predicted in this paper | |
The causal variable of observable variable | |
The probability | |
The maximum lag | |
A time lag unit | |
The Morlet wavelet function | |
* | The complex conjugate |
The frequency localization | |
ω | The frequency |
The Fourier domain of variable | |
The Fourier domain transfer entropy spectrum | |
The change in transfer entropy | |
The unobservable dynamic factor vector | |
The unobservable error term | |
The autoregressive coefficient | |
A diagonal matrix of the error term | |
The covariance matrix | |
The factor load matrix | |
Each candidate factor | |
The best factor individual in generation G | |
The newly generated mutation factors | |
The trajectory vector | |
The objective function | |
, | Two mutually exclusive random numbers |
The cross probability parameter | |
The number of mechanisms |
Variable | Ho: Xi Has a Causal Relationship with Y | Calculation Results | ||||
---|---|---|---|---|---|---|
Xi | T(Xi,Y) | (Xi,Y) | p-Value | ΔT | Results | |
M0001385 | 0.89 | 0.78 | 0.00 | 0.88 | 0.90 | TRUE |
M0000545 | 0.77 | 2.11 | 0.00 | 0.74 | 3.82 | TRUE |
M0001428 | 0.84 | 2.41 | 0.00 | 0.90 | 7.58 | TRUE |
M0000607 | 0.27 | 1.77 | 0.00 | 0.10 | 1.03 | TRUE |
M5440435 | 0.06 | −2.16 | 0.00 | 0.10 | 2.29 | TRUE |
M0000609 | 0.06 | −0.70 | 0.01 | 0.15 | 4.06 | TRUE |
M0009969 | 0.53 | 1.29 | 0.00 | 0.24 | 0.58 | TRUE |
M0010049 | 0.06 | −1.02 | 0.00 | 0.01 | 0.22 | TRUE |
M0001689 | 0.36 | 1.27 | 0.00 | 0.28 | 2.41 | TRUE |
M0009940 | 0.63 | 1.23 | 0.00 | 0.40 | 1.04 | TRUE |
M0001461 | 0.11 | −2.07 | 0.00 | 0.24 | 5.07 | TRUE |
M0043829 | −0.06 | −2.07 | 0.00 | 0.06 | 0.45 | TRUE |
M0024064 | 0.20 | 1.32 | 0.00 | 0.38 | 2.65 | TRUE |
M0096883 | 0.86 | 8.64 | 0.00 | 0.93 | 13.91 | TRUE |
M6096116 | 1.69 | 6.37 | 0.00 | 1.68 | 9.48 | TRUE |
GDP | 0.00 | −4.32 | 0.00 | 0.00 | 0.00 | TRUE |
M0012989 | 0.09 | −1.36 | 0.00 | 0.14 | 3.85 | TRUE |
M6347627 | 0.15 | −0.72 | 0.01 | 0.23 | 4.58 | TRUE |
M5567902 | −0.09 | −1.85 | 0.00 | 0.01 | 1.16 | TRUE |
M0011456 | 0.53 | 1.10 | 0.00 | 0.41 | 1.19 | TRUE |
M0024136 | 0.02 | −2.48 | 0.00 | 0.15 | 3.29 | TRUE |
Variable | Block1-Global | Block2-Soft | Block3-Real | Block4-Labor |
---|---|---|---|---|
M0001385 | 1 | 1 | 0 | 0 |
M0000545 | 1 | 1 | 0 | 0 |
M0001428 | 1 | 0 | 1 | 0 |
M0000607 | 1 | 0 | 0 | 1 |
M5440435 | 1 | 0 | 1 | 0 |
M0000609 | 1 | 0 | 0 | 1 |
M0009969 | 1 | 1 | 0 | 0 |
M0010049 | 1 | 1 | 0 | 0 |
M0001689 | 1 | 0 | 1 | 0 |
M0009940 | 1 | 0 | 1 | 0 |
M0001461 | 1 | 0 | 1 | 0 |
M0043829 | 1 | 1 | 0 | 0 |
M0024064 | 1 | 0 | 1 | 0 |
M0096883 | 1 | 1 | 0 | 0 |
M6096116 | 1 | 0 | 1 | 1 |
GDP | 1 | 0 | 0 | 1 |
M0012989 | 1 | 1 | 0 | 1 |
M6347627 | 1 | 0 | 1 | 1 |
M5567902 | 1 | 0 | 0 | 1 |
M0011456 | 1 | 1 | 0 | 1 |
M0024136 | 1 | 1 | 0 | 0 |
Ahead 30 day | Nowcasting | CNowcasting | AcNowcasting | |
16/9/2021 | MAE | 1.51 | 0.87 | 0.70 |
16/12/2021 | RMSE | 1.92 | 0.87 | 0.81 |
16/3/2022 | MAPE | 0.36 | 0.19 | 0.16 |
Ahead 15 day | Nowcasting | CNowcasting | AcNowcasting | |
2/10/2021 | MAE | 1.71 | 0.80 | 0.51 |
2/1/2022 | RMSE | 2.16 | 0.81 | 0.64 |
2/4/2022 | MAPE | 0.40 | 0.18 | 0.12 |
Ahead 1 day | Nowcasting | CNowcasting | AcNowcasting | |
17/10/2021 | MAE | 2.10 | 0.77 | 0.50 |
17/1/2022 | RMSE | 2.39 | 0.78 | 0.63 |
17/4/2022 | MAPE | 0.49 | 0.17 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Zhang, H.-G. An Adaptive Evolutionary Causal Dynamic Factor Model. Mathematics 2025, 13, 1891. https://doi.org/10.3390/math13111891
Wei Q, Zhang H-G. An Adaptive Evolutionary Causal Dynamic Factor Model. Mathematics. 2025; 13(11):1891. https://doi.org/10.3390/math13111891
Chicago/Turabian StyleWei, Qian, and Heng-Guo Zhang. 2025. "An Adaptive Evolutionary Causal Dynamic Factor Model" Mathematics 13, no. 11: 1891. https://doi.org/10.3390/math13111891
APA StyleWei, Q., & Zhang, H.-G. (2025). An Adaptive Evolutionary Causal Dynamic Factor Model. Mathematics, 13(11), 1891. https://doi.org/10.3390/math13111891