Chaos, Hyperchaos and Transient Chaos in a 4D Hopfield Neural Network: Numerical Analyses and PSpice Implementation
Abstract
1. Introduction
- -
- Introduce a Hopfield-class neural network having a nonlinear synaptic weight and capable of generating interesting dynamics such as chaos, hyperchaos and transient chaos;
- -
- Present simulations to emphasize the rich behaviors exhibited by the proposed HNN model;
- -
- Develop and implement an electronic circuit in PSpice capable of reproducing the complex behaviors of the studied HNN model.
2. Model Design and Analysis of Its Basic Properties
2.1. Model Design
2.2. Evaluation of the Basic Properties of the Studied HNN Model
3. Complicated Dynamics in the Studied HNN Model
4. PSpice-Based Circuit Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babloyantz, A.; Lourenco, C. Brain chaos and computation. Int. J. Neural Syst. 1996, 7, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef] [PubMed]
- de Haan, W.; van der Flier, W.M.; Koene, T.; Smits, L.L.; Scheltens, P.; Stam, C.J. Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. Neuroimage 2012, 59, 3085–3093. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neurons with graded response have collective computational properties like those of 2-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.L.; Zhang, Y.; Xiang, J.H.; Liu, J. Extreme Multistability in a Hopfield Neural Network Based on Two Biological Neuronal Systems. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4568–4572. [Google Scholar] [CrossRef]
- Sun, L.; Luo, J.; Qiao, Y. Initial offset boosting dynamics in a memristive Hopfield neural network and its application in image encryption. Chin. J. Comput. Phys. 2023, 40, 106. [Google Scholar]
- Lin, H.; Wang, C.; Tan, Y. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 2020, 99, 2369–2386. [Google Scholar] [CrossRef]
- Kamdoum Tamba, V.; Mbanda Biamou, A.L.; Pham, V.T.; Grassi, G. Multistable memristor synapse-based coupled bi-Hopfield neuron model: Dynamic analysis, microcontroller implementation and image encryption. Electronics 2024, 13, 1–19. [Google Scholar]
- Li, R.; Dong, E.; Tong, J.; Wang, Z. A Novel Multiscroll Memristive Hopfield Neural Network. Int. J. Bifurc. Chaos 2022, 32, 2250130. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, C.; Lin, H. Chaotic dynamical system of Hopfield neural network influenced by neuron activation threshold and its image encryption. Nonlinear Dyn. 2024, 112, 6629–6646. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.-S.; Yang, F. Hyperchaos in Hopfield-type neural networks. Neurocomputing 2005, 67, 275–280. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, X.-S. Hyperchaos and bifurcation in a new class of four-dimensional Hopfield neural networks. Neurocomputing 2006, 69, 1787–1795. [Google Scholar] [CrossRef]
- Kong, X.; Yu, F.; Yao, W.; Cai, S.; Zhang, J.; Lin, H. Memristor-induced hyperchaos, multiscroll and extreme multistability in fractional-order HNN: Image encryption and FPGA implementation. Neural Netw. 2024, 171, 85–103. [Google Scholar] [CrossRef]
- Njitacke, Z.T.; Isaac, S.D.; Kengne, J.; Negou, A.N.; Leutcho, G.D. Extremely rich dynamics from hyperchaotic Hopfield neural network: Hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Eur. Phys. J. Spec. Top. 2020, 229, 1133–1154. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X. Complex Dynamics in a Simple Hopfield-Type Neural Network. In Advances in Neural Networks—ISNN 2005; Wang, J., Liao, X., Yi, Z., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3496, pp. 357–362. [Google Scholar]
- Nayfeh, A.H.; Balakumar, B. Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Hilborn, R.C. Chaos and Nonlinear Dynamics-An Introduction for Scientists and Engineers; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Nik, H.S.; Effati, S.; Saberi-Nadjafi, J. Ultimate bound sets of a hyperchaotic system and its application in chaos synchronization. Complexity 2015, 20, 30–44. [Google Scholar] [CrossRef]
- Chen, M.; Xu, Q.; Lin, Y.; Bao, B.C. Multistability induced by two symmetric stable node foci in modified canonical Chua’s circuit. Nonlinear Dyn. 2017, 87, 789–802. [Google Scholar] [CrossRef]
- Chang, T.S.; Chen, C.T. On the Routh Hurwitz criterion. IEEE Trans. Autom. Control 1974, 19, 250. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Wastano, J.A. Determining Lyapunov exponents from time series. Phys. D: Nonlinear Phenom 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Dadras, S.; Momeni, H.R.; Qi, G. Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos. Nonlinear Dyn. 2010, 62, 391–405. [Google Scholar] [CrossRef]
- Izrailev, F.M.; Timmermann, B.; Timmermann, W. Transient chaos in a generalized Henon map on the torus. Phys. Lett. A 1988, 126, 405–410. [Google Scholar] [CrossRef]
- Yorke, J.A.; Yorke, E.D. The transition to sustained chaotic behavior in the Lorenz model. J. Stat. Phys. 1979, 21, 263–277. [Google Scholar] [CrossRef]
- Paula, A.S.; Savi, M.A.; Peireira-Pinto, F.H. Chaos and transient chaos in an experimental nonlinear pendulum. J. Sound. Vib. 2006, 294, 585–595. [Google Scholar] [CrossRef]
- Tamba, V.K.; Fotsin, H.B.; Kengne, J.; Elie, B.; Megam Ngouonkadi, P.K. Talla Emergence of complex dynamical behaviors in improved Colpitts oscillators: Antimonotonicity, coexisting attractors, and metastable chaos. Int. J. Dynam. Control 2017, 5, 395–406. [Google Scholar] [CrossRef]
- Kengne, J. Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. Int. J. Bifurc. Chaos 2015, 25, 1550052. [Google Scholar] [CrossRef]
- Yang, X.S.; Yuan, Q. Chaos and transient chaos in simple Hopfield neural network. Neurocomputing 2005, 69, 232–241. [Google Scholar] [CrossRef]
Synaptic Weight | Nontrivial Equilibrium State (x1*, x2*, x3*, x4*) | Eigenvalues at the Nontrivial Equilibrium State | Eigenvalues at the Origin |
---|---|---|---|
−5 | (−0.16, −0.16, −0.31, 1.3) and (0.17, 0.17, 0.33, −1.28) | (−56.2, −1.08 ± 3.05i, −4.42) stable and (−54.7, −0.95 ± 2.9i, −4.4) stable | (68.547, −0.1309 ± 2.861i, 4.2818) unstable |
2 | Not nontrivial equilibrium state | … | (68.5437, 0.4234 ± 4.2396i, 1.6092) unstable |
5 | (0.2, 0.21, −0.3, 1.82) (−0.2, −0.2, 0.28, −1.8) (−2.26, −3.65, 0.58, −2.66) (2.06, 3.45, −0.68, 2.65) | (−82.9, 0.33 ± 3.48, 2.68) unstable (−82.28, 0.48 ± 3.58, 2.8) unstable (−96.71, −0.61 ± 0.42, −0.98) stable (−96.64, −0.65 ± 0.54, −0.97) stable | (68.5437, 1.0434 ± 3.9705, 3.3693) unstable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamba, V.K.; Ngoko, G.; Pham, V.-T.; Grassi, G. Chaos, Hyperchaos and Transient Chaos in a 4D Hopfield Neural Network: Numerical Analyses and PSpice Implementation. Mathematics 2025, 13, 1872. https://doi.org/10.3390/math13111872
Tamba VK, Ngoko G, Pham V-T, Grassi G. Chaos, Hyperchaos and Transient Chaos in a 4D Hopfield Neural Network: Numerical Analyses and PSpice Implementation. Mathematics. 2025; 13(11):1872. https://doi.org/10.3390/math13111872
Chicago/Turabian StyleTamba, Victor Kamdoum, Gaetant Ngoko, Viet-Thanh Pham, and Giuseppe Grassi. 2025. "Chaos, Hyperchaos and Transient Chaos in a 4D Hopfield Neural Network: Numerical Analyses and PSpice Implementation" Mathematics 13, no. 11: 1872. https://doi.org/10.3390/math13111872
APA StyleTamba, V. K., Ngoko, G., Pham, V.-T., & Grassi, G. (2025). Chaos, Hyperchaos and Transient Chaos in a 4D Hopfield Neural Network: Numerical Analyses and PSpice Implementation. Mathematics, 13(11), 1872. https://doi.org/10.3390/math13111872