Approximation by Bicomplex Favard–Szász–Mirakjan Operators
Abstract
1. Introduction
2. Theoretical Background on Bicomplex Numbers and Polynomials
3. Construction of Bicomplex Favard–Szász–Mirakjan Operators
Analysis of Approximation Properties
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weierstrass, K. Über die analytische Darstellbarkeit sogenannter willkülicher Functionen einer reellen Veränderlichen. Sitzungsberichte Königlich Preußischen Akad. Wiss. Berl. 1885, 2, 633–639. [Google Scholar]
- Bernstein, S. Démonstration du théorème de Weierstrass fondée. Comm. Kharkov Math. Soc. 1912, 13, 1–2. [Google Scholar]
- Szász, O. Generalization of S. Bernstein’s polynomials to the infinite interval. Res. Nat. Bur. Stand. 1950, 45, 239–245. [Google Scholar] [CrossRef]
- Mirakjan, G.M. Approximation of continuous functions with the aid of polynomials. In Dokl. Acad. Nauk. SSSR 1941, 31, 201–205. [Google Scholar]
- Agrawal, P.N.; Ispir, N. Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators. Results. Math. 2016, 69, 369–385. [Google Scholar] [CrossRef]
- Rao, N.A.; Wafi, A.; Acu, A.M. q-Szász-Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory 2019, 13, 915–934. [Google Scholar] [CrossRef]
- Karateke, S.; Atakut, Ç.; Büyükyazıcı, İ. Approximation by generalized integral Favard-Szász type operators involving Sheffer polynomials. Filomat 2019, 33, 1921–1935. [Google Scholar] [CrossRef]
- Mursaleen, M.; Khan, T. On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators. Azerbaijan J. Math. 2017, 7, 16–26. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Ali, R. A Study of Szasz Durremeyer-Type Operators Involving Adjoint Bernoulli Polynomials. Mathematics 2024, 12, 3645. [Google Scholar] [CrossRef]
- Rao, N.; Farid, M.; Raiz, M. Approximation Results: Szász Kantorovich Operators Enhanced by Frobenius Euler Type Polynomials. Axioms 2025, 14, 252. [Google Scholar] [CrossRef]
- Lorentz, G.G. Bernstein Polynomials, 2nd ed.; Chelsea Publ.: New York, NY, USA, 1986. [Google Scholar]
- Gal, S.G. Shape Preserving Approximation by Real and Complex Polynomials; Birkhauser Publ.: Boston, MA, USA, 2008. [Google Scholar]
- Gal, S.G. Voronovskaja’s theorem and iterations for complex Bernstein polynomials in compact disks. Mediterr. J. Math. 2008, 5, 253–272. [Google Scholar] [CrossRef]
- Gal, S.G. Approximation and Geometric Properties of Complex Favard–Szász–Mirakjan Operators in Compact Disks. Comput. Math. Appl. 2008, 56, 1121–1127. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Approximation by complex Bernstein-Durrmeyer polynomials in compact disks. Mediterr. J. Math. 2010, 7, 471–482. [Google Scholar] [CrossRef]
- Gal, S.G. Approximation by Complex Bernstein and Convolution Type Operators; World Scientific: Singapore, 2009; Volume 8, 352p. [Google Scholar]
- Gal, S.G. Approximation of analytic functions without exponential growth conditions by complex Favard–Szász–Mirakjan operators. Rend. Circ. Mat. Palermo. 2010, 59, 367–376. [Google Scholar] [CrossRef]
- Segre, C. The real representation of complex elements and hyperalgebraic entities (Italian). Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Rochon, D.; Shapiro, M. On algebraic properties of bicomplex and hyperbolic numbers. Anal. Univ. Oradea Fasc. Math. 2004, 11, 110. [Google Scholar]
- Price, G.B. An Introduction to Multicomplex Spaces and Functions; Monographs and Textbooks in Pure and Applied Mathematics; M. Dekker: New York, NY, USA, 1991; Volume 140. [Google Scholar]
- Luna-Elizarrarás, M.E.; Shapiro, M.; Struppa, D.C.; Vajiac, A. Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers; Birkhauser: Cham, Switzerland, 2015. [Google Scholar]
- Luna-Elizarrarás, M.E.; Shapiro, M.; Struppa, D.C. Bicomplex numbers and their elementary functions. Cubo 2012, 14, 61–80. [Google Scholar] [CrossRef]
- Mursaleen, M.; Nasiruzzaman, M.; Srivastava, H.M. Approximation by bicomplex beta operators in compact BC-disks. Math. Methods Appl. Sci. 2016, 39, 2916–2929. [Google Scholar] [CrossRef]
- Usman, T.; Saif, M.; Choi, J. Certain identities associated with (p;q)-binomial coefficients and (p;q)-Stirling polynomials of the second kind. Symmetry 2020, 12, 1436. [Google Scholar] [CrossRef]
- Rönn, S. Bicomplex algebra and function theory. arXiv 2001, arXiv:math/0101200v1. [Google Scholar]
- Arfaoui, S.; Mabrouk, A.B.; Cattani, C. New type of Gegenbauer-Jacobi-Hermite monogenic polynomials and associated continuous Clifford wavelet transform. Acta Appl. Math. 2020, 170, 1–35. [Google Scholar] [CrossRef]
- Arfaoui, S.; Mabrouk, A.B.; Cattani, C. Wavelet Analysis: Basic Concepts and Applications; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2021. [Google Scholar]
- Jallouli, M.; Arfaoui, S.; Ben Mabrouk, A.; Cattani, C. Clifford wavelet entropy for fetal ECG extraction. Entropy 2021, 23, 844. [Google Scholar] [CrossRef] [PubMed]
- Gargoubi, H.; Kossentini, S. Bicomplex numbers as a normal complexified f-algebra. Commun. Math. 2022, 30. [Google Scholar] [CrossRef]
- Cattani, C.; Atakut, Ç.; Özalp Güller, Ö.; Karateke, S. Some New Results on Bicomplex Bernstein Polynomials. Mathematics 2021, 9, 2748. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastassiou, G.A.; Özalp Güller, Ö.; Raiz, M.; Karateke, S. Approximation by Bicomplex Favard–Szász–Mirakjan Operators. Mathematics 2025, 13, 1830. https://doi.org/10.3390/math13111830
Anastassiou GA, Özalp Güller Ö, Raiz M, Karateke S. Approximation by Bicomplex Favard–Szász–Mirakjan Operators. Mathematics. 2025; 13(11):1830. https://doi.org/10.3390/math13111830
Chicago/Turabian StyleAnastassiou, George A., Özge Özalp Güller, Mohd Raiz, and Seda Karateke. 2025. "Approximation by Bicomplex Favard–Szász–Mirakjan Operators" Mathematics 13, no. 11: 1830. https://doi.org/10.3390/math13111830
APA StyleAnastassiou, G. A., Özalp Güller, Ö., Raiz, M., & Karateke, S. (2025). Approximation by Bicomplex Favard–Szász–Mirakjan Operators. Mathematics, 13(11), 1830. https://doi.org/10.3390/math13111830