A New Fixed Point Iterative Scheme Applied to the Dynamics of an Ebola Delayed Epidemic Model
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Some Modified Iterative Schemes
1.3. Research Gap and Objective
Is there an iterative scheme with a better convergence rate than the Picard–Noor and UO iterative schemes under contractive mappings?
1.4. Proposed Iterative Scheme
2. Convergence Theorem
Algorithm 1 Fast fixed point iterative scheme |
Set a tolerance for do if then break end if end for |
3. Data Dependence and Stability Results
4. Rate of Convergence
5. Numerical Computations
6. Application to Ebola Virus Disease
6.1. Fixed Point Theory in Epidemiology
6.2. Model Structure
- Time delay effects: states at time t depend on values at ;
- Integral terms: history-dependent accumulation of infection and recovery;
- Nonlinear interaction terms involving , , and .
6.3. Fixed Point Reformulation
6.4. Dynamics of the Ebola Virus Model
6.5. Analysis and Discussion of the Model Dynamics
- Susceptible Population Dynamics
- Exposed Population Dynamics
- Infected Population Dynamics
- Recovered Population Dynamics
Algorithm 2 Steps employed in solving the Ebola virus model |
|
- Possible Improvements
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–54. [Google Scholar]
- Bin Dehaish, B.A.; Khamsi, M.A. Mann iteration process for monotone nonexpansive mappings. Fixed Point Theory Appl. 2015, 2015, 177. [Google Scholar] [CrossRef]
- Kalinde, A.K.; Rhoades, B. Fixed point Ishikawa iterations. J. Math. Anal. Appl. 1992, 170, 600–606. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Khan, S.H. A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 2013, 69. [Google Scholar] [CrossRef]
- Sahu, D. Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 2011, 12, 187–204. [Google Scholar]
- Gürsoy, F. Applications of Normal S-Iterative Method to a Nonlinear Integral Equation. Sci. World J. 2014, 2014, 943127. [Google Scholar] [CrossRef]
- Saad, Y. Acceleration methods for fixed point iterations. Acta Numer. 2024, 1–85. Available online: https://www-users.cse.umn.edu/~saad/PDF/ActaNumer25.pdf (accessed on 21 May 2025). [CrossRef]
- Berinde, V. Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2004, 2004, 716359. [Google Scholar] [CrossRef]
- Agarwal, R.; O Regan, D.; Sahu, D. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61. [Google Scholar]
- Kadioglu, N.; Yildirim, I. Approximating fixed points of nonexpansive mappings by a faster iteration process. arXiv 2014, arXiv:1402.6530. [Google Scholar]
- Okeke, G.A.; Anozie, E.; Udo, A.; Olaoluwa, H. A Novel Fixed Point Iteration Process Applied in Solving Delay Differential Equations: A Novel Fixed Point Iteration Process Applied in Solving. J. Niger. Math. Soc. 2024, 43, 115–143. [Google Scholar]
- Okeke, G.A.; Udo, A.V.; Alharthi, N.H.; Alqahtani, R.T. A New Robust Iterative Scheme Applied in Solving a Fractional Diffusion Model for Oxygen Delivery via a Capillary of Tissues. Mathematics 2024, 12, 1339. [Google Scholar] [CrossRef]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Liu, Z.; Kang, S.M.; Cho, Y.J. Convergence and almost stability of Ishikawa iterative scheme with errors for m-accretive operators. Comput. Math. Appl. 2004, 47, 767–778. [Google Scholar] [CrossRef]
- Hussain, A.; Ali, D.; Karapinar, E. Stability data dependency and errors estimation for a general iteration method. Alex. Eng. J. 2021, 60, 703–710. [Google Scholar] [CrossRef]
- Berinde, V. On the stability of some fixed point procedures. Bul. S¸tiint¸. Univ. Baia Mare Ser. B 2002, 18, 7–14. [Google Scholar]
- Srivastava, R.; Ahmed, W.; Tassaddiq, A.; Alotaibi, N. Efficiency of a New Iterative Algorithm Using Fixed-Point Approach in the Settings of Uniformly Convex Banach Spaces. Axioms 2024, 13, 502. [Google Scholar] [CrossRef]
- Kumar, A.; Alshahrani, B.; Yakout, H.; Abdel-Aty, A.H.; Kumar, S. Dynamical study on three-species population eco-epidemiological model with fractional order derivatives. Results Phys. 2021, 24, 104074. [Google Scholar] [CrossRef]
- Asamoah, J.K.K. Fractal–fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana–Baleanu derivative. Results Phys. 2022, 34, 105189. [Google Scholar] [CrossRef]
- Khan, A.; Gómez-Aguilar, J.; Khan, T.S.; Khan, H. Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos Solitons Fractals 2019, 122, 119–128. [Google Scholar] [CrossRef]
- Abouelkheir, I.; El Kihal, F.; Rachik, M.; Elmouki, I. Time needed to control an epidemic with restricted resources in SIR model with short-term controlled population: A fixed point method for a free isoperimetric optimal control problem. Math. Comput. Appl. 2018, 23, 64. [Google Scholar] [CrossRef]
- WHO. Ebola Virus Disease. Available online: https://www.who.int/health-topics/ebola#tab=tab_1 (accessed on 20 January 2025).
- Rhoubari, Z.E.; Besbassi, H.; Hattaf, K.; Yousfi, N. Dynamics of a generalized model for Ebola virus disease. In Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics: Selected Works Presented at the BIOMAT Consortium Lectures, Morocco 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 35–46. [Google Scholar]
- Raza, A.; Ahmed, N.; Rafiq, M.; Akgül, A.; Cordero, A.; Torregrosa, J.R. Mathematical modeling of Ebola using delay differential equations. Model. Earth Syst. Environ. 2024, 10, 6309–6322. [Google Scholar] [CrossRef]
- Rafiq, M.; Ahmad, W.; Abbas, M.; Baleanu, D. A reliable and competitive mathematical analysis of Ebola epidemic model. Adv. Differ. Equ. 2020, 2020, 540. [Google Scholar] [CrossRef]
Iteration Number | New Scheme | UO | Picard–Noor |
---|---|---|---|
0 | 4.3000000000 | 4.3000000000 | 4.3000000000 |
1 | 4.0678852081 | 4.0905136108 | 4.1457336426 |
2 | 4.0153613383 | 4.0273090458 | 4.0707943153 |
3 | 4.0034760255 | 4.0082394678 | 4.0343903781 |
4 | 4.0007865690 | 4.0024859466 | 4.0167061169 |
5 | 4.0001779880 | 4.0007500400 | 4.0081154776 |
6 | 4.0000402758 | 4.0002262961 | 4.0039423270 |
7 | 4.0000091138 | 4.0000682763 | 4.0019150989 |
8 | 4.0000020623 | 4.0000205998 | 4.0009303145 |
9 | 4.0000004667 | 4.0000062152 | 4.0004519271 |
10 | 4.0000001056 | 4.0000018752 | 4.0002195366 |
11 | 4.0000000239 | 4.0000005658 | 4.0001066462 |
12 | 4.0000000054 | 4.0000001707 | 4.0000518065 |
13 | 4.0000000012 | 4.0000000515 | 4.0000251665 |
14 | 4.0000000003 | 4.0000000155 | 4.0000122253 |
15 | 4.0000000001 | 4.0000000047 | 4.0000059388 |
16 | 4.0000000000 | 4.0000000014 | 4.0000028850 |
17 | 4.0000000000 | 4.0000000004 | 4.0000014014 |
18 | 4.0000000000 | 4.0000000001 | 4.0000006808 |
19 | 4.0000000000 | 4.0000000000 | 4.0000003307 |
20 | 4.0000000000 | 4.0000000000 | 4.0000001607 |
Iteration Number | New Scheme | UO | Picard–Noor |
---|---|---|---|
0 | 0.9000000000 | 0.9000000000 | 0.9000000000 |
1 | 0.7320424192 | 0.7496727403 | 0.6718789497 |
2 | 0.7393908672 | 0.7397687771 | 0.7655849102 |
3 | 0.7390718545 | 0.7391292157 | 0.7283701427 |
4 | 0.7390857099 | 0.7390879755 | 0.7433757699 |
5 | 0.7390851082 | 0.7390853165 | 0.7373602050 |
6 | 0.7390851343 | 0.7390851450 | 0.7397774964 |
7 | 0.7390851332 | 0.7390851340 | 0.7388070510 |
8 | 0.7390851332 | 0.7390851333 | 0.7391967942 |
9 | 0.7390851332 | 0.7390851332 | 0.7390402923 |
10 | 0.7390851332 | 0.7390851332 | 0.7391031397 |
11 | 0.7390851332 | 0.7390851332 | 0.7390779023 |
Parameter | Symbol | Description | Value |
---|---|---|---|
Relaxation rate | Weight for update step | 0.5 | |
Tolerance | Stopping criterion | ||
Max iterations | Limit on iterations | 1000 | |
Natural mortality rate (susceptible) | Death rate of susceptible humans | 0.9704 | |
Natural mortality rate (exposed) | Death rate of exposed humans | 0.0432 | |
Disease-induced mortality (exposed) | Mortality from disease in exposed | 0.2006 | |
Natural mortality rate (infected) | Death rate of infected humans | 0.0656 | |
Disease-induced mortality (infected) | Mortality from disease in infected | 0.9764 | |
Natural mortality rate (recovered) | Death rate of recovered humans | 0.6704 | |
Infection rate: susceptible → exposed | Human-to-human transmission | 0.2877 | |
Infection rate: exposed → infected | Progression of infection | 0.7613 | |
Infection rate: infected → recovered | Recovery rate | 0.4389 | |
Infection rate by wild animals (S → E) | Zoonotic exposure (wild animals) | 0.1234 | |
Infection rate by wild animals (S → I) | Wild-animal to human infection | 0.2431 | |
Infection rate by domestic animals (S → E) | Zoonotic exposure (domestic) | 0.4 | |
Infection rate by domestic animals (S → I) | Domestic-animal to human infection | 0.3 | |
Recruitment rate (susceptible humans) | Natural human population growth | 0.06321 |
Step | Numerical Method | Purpose |
---|---|---|
Time discretization | Uniform time grid with step size | Discretize the time domain into equidistant points |
Delay handling | Integer index mapping | Convert constant delay r into discrete index for referencing past values |
Integral evaluation | 5-point Gauss–Legendre quadrature | Accurately approximate nonlinear integral terms in each compartment |
Update of | Our new scheme using parameters | Stabilize and accelerate convergence of nonlinear update in |
Update of | Direct Gauss–Legendre integral with max projection | Update other compartments using integrated equations and ensure non-negativity |
Projection | operation | Enforce non-negativity of compartment populations |
Stopping criterion | ∞-norm threshold on iterates | Terminate global iterations when convergence tolerance is satisfied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okeke, G.A.; Alqahtani, R.T.; Anozie, E.H. A New Fixed Point Iterative Scheme Applied to the Dynamics of an Ebola Delayed Epidemic Model. Mathematics 2025, 13, 1764. https://doi.org/10.3390/math13111764
Okeke GA, Alqahtani RT, Anozie EH. A New Fixed Point Iterative Scheme Applied to the Dynamics of an Ebola Delayed Epidemic Model. Mathematics. 2025; 13(11):1764. https://doi.org/10.3390/math13111764
Chicago/Turabian StyleOkeke, Godwin Amechi, Rubayyi T. Alqahtani, and Ebube Henry Anozie. 2025. "A New Fixed Point Iterative Scheme Applied to the Dynamics of an Ebola Delayed Epidemic Model" Mathematics 13, no. 11: 1764. https://doi.org/10.3390/math13111764
APA StyleOkeke, G. A., Alqahtani, R. T., & Anozie, E. H. (2025). A New Fixed Point Iterative Scheme Applied to the Dynamics of an Ebola Delayed Epidemic Model. Mathematics, 13(11), 1764. https://doi.org/10.3390/math13111764