Inverse Source Problem for a Singular Parabolic Equation with Variable Coefficients
Abstract
:1. Introduction and Main Result
2. Functional Setting and Well-Posedness
3. Carleman Estimate
4. Proof of Theorem 1
5. Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Theorem 3
Appendix A.1. Main Steps
Appendix A.1.1. Step 1: Lower Bound of the Quantity
Appendix A.1.2. Step 2: Estimation on ∂ t z
Appendix A.1.3. Partial Conclusion: Full Carleman Estimates on z
Appendix A.1.4. Conclusion: Full Carleman Estimates on w
Appendix A.2. Proofs of Some Technical Lemmas
References
- Bebernes, J.; Eberly, D. Mathematical Problems from Combustion Theory; Applied Mathematical Sciences; Springer: Berlin/Heidelberg, Germany, 1989; Volume 83. [Google Scholar]
- Brezis, H.; Vzquez, J.L. Blow-up solutions of some nonlinear elliptic equations. Rev. Mat. Complut. 1997, 10, 443–469. [Google Scholar]
- Dold, J.W.; Galaktionov, V.A.; Lacey, A.A.; Vzquez, J.L. Rate of approach to a singular steady state in quasilinear reaction-diffusion equations. Ann. Della Sc. Norm. Super. Pisa-Cl. Sci. 1998, 26, 663–687. [Google Scholar]
- Galaktionov, V.; Vzquez, J.L. Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math. 1997, 1, 1–67. [Google Scholar] [CrossRef]
- De Castro, A.S. Bound states of the Dirac equation for a class of effective quadratic plus inversely quadratic potentials. Ann. Phys. 2004, 311, 170–181. [Google Scholar] [CrossRef]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics; Academic Press: New York, NY, USA, 1979; Volume II. [Google Scholar]
- Baras, P.; Goldstein, J. Remarks on the inverse square potential in quantum mechanics. In Diff. Equat. North-Holland Mathematical Studies; Knowles, I., Lewis, R., Eds.; North-Holland: Amsterdam, The Netherlands, 1984; Volume 92, pp. 31–35. [Google Scholar]
- Chandrasekhar, S. An Introduction to the Study of Stellar Structure; Dover Publ. Inc.: New York, NY, USA, 1985. [Google Scholar]
- Bukhgeim, A.L.; Klibanov, M.V. Uniqueness in the large class of multidimensional inverse problems. Sov. Math. Dokl. 1981, 24, 244–247. [Google Scholar]
- Vancostenoble, J. Lipschitz stability in inverse source problems for singular parabolic equations. Commun. Partial Differ. Equ. 2011, 36, 1287–1317. [Google Scholar] [CrossRef]
- Qin, X.; Li, S. The null controllability for a singular heat equation with variable coefficients. Appl. Anal. 2022, 101, 1052–1076. [Google Scholar] [CrossRef]
- Qin, X.; Li, S. Local logarithmic stability of an inverse coefficient problem for a singular heat equation with an inverse-square potential. Appl. Anal. 2023, 102, 1995–2017. [Google Scholar] [CrossRef]
- Qin, X. Carleman estimate and applications for a heat equation with multiple singularities. Appl. Anal. 2024, 103, 3425–3446. [Google Scholar] [CrossRef]
- Biccari, U.; Zuazua, E. Null controllability for a heat equation with a singular inverse- square potential involving the distance to the boundary function. J. Differ. Equ. 2016, 261, 2809–2853. [Google Scholar] [CrossRef]
- Ervedoza, S. Control and stabilization properties for a singular heat equation with an inverse square potential. Commun. Partial Differ. Equ. 2008, 33, 1996–2019. [Google Scholar] [CrossRef]
- Cristian, C. Controllability of the Heat Equation with an Inverse-Square Potential Localized on the Boundary. SIAM J. Control Optim. 2014, 52, 2055–2089. [Google Scholar]
- Vancostenoble, J.; Zuazua, E. Null controllability for the heat equation with singular inverse-square potentials. J. Funct. Anal. 2008, 254, 1864–1902. [Google Scholar] [CrossRef]
- Baras, P.; Goldstein, J. The heat equation with a singular potential. Trans. Amer. Math. Soc. 1984, 284, 121–139. [Google Scholar] [CrossRef]
- Vazquez, J.L.; Zuazua, E. The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential. J. Funct. Anal. 2000, 173, 103–153. [Google Scholar] [CrossRef]
- Goldstein, J.A.; Zhang, Q.S. Linear Parabolic Equations with Strong Singular Potentials. Trans. Am. Math. Soc. 2003, 355, 197–211. [Google Scholar] [CrossRef]
- Cabré, X.; Martel, Y. Existence versus explosion instantane pour des equations de la chaleur linaires avec potentiel singulier [Existence versus instantaneous blow-up for linear heat equations with singular potential]. C. R. Acad. Sci. Paris 1999, 329, 973–978. [Google Scholar] [CrossRef]
- Liskevich, V.A.; Semenov, Y.A. Some problems on Markov semigroups. In SchrÖdinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras; Akademie Verlag: Berlin, Germany, 1996; MR 97g:47036, 163–217, Math. Top., 11. [Google Scholar]
- Carleman, T. Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. 1939, 26, 1–9. [Google Scholar]
- Bukhgejm, A.L. Introduction to the Theory of Inverse Problems; VSP: Utrecht, The Netherlands, 2000. [Google Scholar]
- Huang, X.; Imanuvilov, O.; Yamamoto, M. Stability for inverse source problems by Carleman estimates. Inverse Probl. 2020, 36, 125006. [Google Scholar] [CrossRef]
- Isakov, V. Inverse Source Problems; American Mathematical Society: Providence, RI, USA, 1990. [Google Scholar]
- Klibanov, M.V. Inverse Problems in the “large” and Carleman estimates. Differ. Uravn. 1984, 20, 1035–1041. (In Russian) [Google Scholar]
- Klibanov, M.V. A class of inverse problems for nonlinear parabolic equations. Siberian Math. J. 1987, 27, 698–707. [Google Scholar] [CrossRef]
- Klibanov, M.V. Inverse problems and Carleman estimates. Inverse Probl. 1992, 8, 575–596. [Google Scholar] [CrossRef]
- Klibanov, M.V. Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse-Ill Posed Probl. 2013, 21, 477–560. [Google Scholar] [CrossRef]
- Klibanov, M.V.; Li, J. Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Imanuvilov, O.Y.; Yamamoto, M. Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Probl. 1998, 14, 1229–1245. [Google Scholar] [CrossRef]
- Yamamoto, M. Carleman estimates for parabolic equations and applications. Inverse Probl. 2009, 25, 123013. [Google Scholar] [CrossRef]
- Yuan, G.; Yamamoto, M. Lipschitz stability in the determination of the principal part of a parabolic equation. ESAIM Control Optim. Calc. Var. 2009, 15, 525–554. [Google Scholar] [CrossRef]
- Maz’ja, V.G. Sobolev Spaces. Springer Series in Soviet Mathematics; Shaposhnikova, T.O., Translator; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Li, S. Inverse Source Problem for a Singular Parabolic Equation with Variable Coefficients. Mathematics 2025, 13, 1678. https://doi.org/10.3390/math13101678
Qin X, Li S. Inverse Source Problem for a Singular Parabolic Equation with Variable Coefficients. Mathematics. 2025; 13(10):1678. https://doi.org/10.3390/math13101678
Chicago/Turabian StyleQin, Xue, and Shumin Li. 2025. "Inverse Source Problem for a Singular Parabolic Equation with Variable Coefficients" Mathematics 13, no. 10: 1678. https://doi.org/10.3390/math13101678
APA StyleQin, X., & Li, S. (2025). Inverse Source Problem for a Singular Parabolic Equation with Variable Coefficients. Mathematics, 13(10), 1678. https://doi.org/10.3390/math13101678