Probabilistic Basis of Parametrized Relativistic Quantum Theory in Curved Spacetime
Abstract
:1. Introduction
2. Probabilistic Concepts
2.1. Many-Body System
2.2. Internal Variables
2.3. Parametrized Continuity Equation in Curved Spacetime
3. The Multicomponent, Many-Body Formalism in Curved Spacetime
4. Discussion
4.1. Physical Correspondence [6,7]
4.2. Interpretation of Mass [6,7]
4.3. A Relativistic N-Particle System [6,7,34]
4.4. Two-Body Bound State Problem
4.5. Parametrized Relativistic Quantum Theory in Curved Spacetime
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LQG | Loop Quantum Gravity |
MDPI | Multidisciplinary Digital Publishing Institute |
PRQT | Parametrized Relativistic Quantum Theory |
QFT | Quantum Field Theory |
SHP | Stueckelberg–Horwitz–Piron |
Appendix A
Appendix B
References
- Stueckelberg, E.C.G. La signification du temps propre en mecanique ondulatoire [The meaning of proper time in undulatory mechanics]. Helv. Phys. Acta 1941, 14, 322–323. [Google Scholar]
- Stueckelberg, E.C.G. Remarque a propos de la creation de paires de particules en theorie de relativite [Note about the creation of particle pairs in the theory of relativity]. Helv. Phys. Acta 1941, 14, 588–594. [Google Scholar]
- Stueckelberg, E.C.G. La mecanique du point materiel en theorie de relativite et en theorie des quanta [The mechanics of the material point in the theory of relativity and in quantum theory]. Helv. Phys. Acta 1942, 15, 23–37. [Google Scholar]
- Horwitz, L.P. Relativistic Quantum Mechanics; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Horwitz, L.P. Concepts in Relativistic Dynamics; World Scientific: Singapore, 2023. [Google Scholar]
- Fanchi, J.R. Manifestly Covariant Quantum Theory with Invariant Evolution Parameter in Relativistic Dynamics. Found. Phys. 2011, 41, 4–32. [Google Scholar] [CrossRef]
- Fanchi, J.R. Parametrized Relativistic Quantum Theory; Kluwer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Pavšič, M. The Landscape of Theoretical Physics: A Global View; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Pavšič, M. Stumbling Blocks Against Unification; World Scientific: Singapore, 2020. [Google Scholar]
- Horwitz, L.P.; Piron, C. Relativistic Dynamics. Helv. Phys. Acta 1973, 46, 316–326. [Google Scholar]
- Land, M.; Horwitz, L.P. Relativistic Classical Mechanics and Electrodynamics; Morgan & Claypool: Williston, VT, USA, 2020. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef]
- Salisbury, D. Léon Rosenfeld’s pioneering steps toward a quantum theory of gravity. J. Phys. Conf. Ser. 2010, 222, 012052. [Google Scholar] [CrossRef]
- Salisbury, D.; Sundermeyer, K. Léon Rosenfeld’s general theory of constrained Hamiltonian dynamics. Euro. Phys. J. H 2017, 42, 23–61. [Google Scholar] [CrossRef]
- Peruzzi, G.; Rocci, A. Tales from the prehistory of Quantum Gravity. Léon Rosenfeld’s earliest contributions. Eur. Phys. J. H 2018, 43, 185–241. [Google Scholar] [CrossRef]
- Rosenfeld, L. Zur Quantelung der Wellenfelder. Ann. Phys. 1930, 5, 113–152. [Google Scholar] [CrossRef]
- Rosenfeld, L. Uber die Gravitationswirkungen des Lichtes. Z. Phys. 1930, 65, 589–599. [Google Scholar] [CrossRef]
- Zee, A. Chapter VIII.1 Gravity as a Field Theory and the Kaluza-Klein Picture. In Quantum Field Theory in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Kaku, M. Chapter 19 Quantum Gravity. In Quantum Field Theory; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Pavšič, M. On the Stueckelberg-like generalization of general relativity. J. Phys. Conf. Ser. 2011, 330, 012011. [Google Scholar] [CrossRef]
- Scadron, M.D. Chapter 14 Lowest-Order Gravitational Interactions. In Advanced Quantum Theory; Springer: New York, NY, USA, 1979. [Google Scholar]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; University of Chicago Press: Chicago, IL, USA, 1994. [Google Scholar]
- Cao, T.Y.; Schweber, S. The conceptual foundations and the philosophical aspects of renormalization theory. Synthese 1993, 97, 33–108. [Google Scholar] [CrossRef]
- Rocci, A.; van Riet, T. The Quantum Theory of Gravitation, Effective Field Theories, and Strings: Yesterday and Today. Eur. Phys. J. H 2024, 49, 7. [Google Scholar] [CrossRef]
- Zee, A. Chapter VIII.3 Effective Field Theory Approach to Understanding Nature. In Quantum Field Theory in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Kaku, M. Chapter 21 Superstrings. In Quantum Field Theory; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Zwiebach, B. A First Course in String Theory; Cambridge University Press: Cambridge, UK, 2004; Chapter 10. [Google Scholar]
- Rovelli, C. Loop quantum gravity: The first 25 years. Class. Quantum Grav. 2011, 28, 153002. [Google Scholar] [CrossRef]
- Gubitosi, G.; Ripken, C.; Saueressig, F. Scales and Hierarchies in Asymptotically Safe Quantum Gravity: A Review. Found. Phys. 2019, 49, 972–990. [Google Scholar] [CrossRef]
- Valentini, A. Beyond the Born Rule in Quantum Gravity. Found. Phys. 2023, 53, 6. [Google Scholar] [CrossRef]
- Fanchi, J.R.; Collins, R.E. Quantum Mechanics of Relativistic Spinless Particles. Found. Phys. 1978, 8, 851–877. [Google Scholar] [CrossRef]
- Collins, R.E.; Fanchi, J.R. Relativistic Quantum Mechanics: A Space-Time Formalism for Spin-Zero Particles. Nuo. Cim. A 1978, 48, 314–326. [Google Scholar] [CrossRef]
- Fanchi, J.R. 4-space formulation of field equations for multicomponent eigenfunctions. J. Math. Phys. 1981, 22, 794–797. [Google Scholar] [CrossRef]
- Fanchi, J.R.; Wilson, W.J. Relativistic Many-Body Systems: Evolution-Parameter Formalism. Found. Phys. 1983, 13, 571–605. [Google Scholar] [CrossRef]
- Fanchi, J.R. Parametrized Relativistic Quantum Theory in Curved Spacetime. J. Phys. Conf. Ser. 2023, 2482, 012002. [Google Scholar] [CrossRef]
- Fanchi, J.R. Quantum Potential in Relativistic Dynamics. Found. Phys. 2000, 30, 1161–1189. [Google Scholar] [CrossRef]
- Horwitz, L.P.; Arshansky, R.I. Symmetry of the Relativistic Two-Body Bound State. Symmetry 2020, 12, 313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanchi, J.R. Probabilistic Basis of Parametrized Relativistic Quantum Theory in Curved Spacetime. Mathematics 2025, 13, 1657. https://doi.org/10.3390/math13101657
Fanchi JR. Probabilistic Basis of Parametrized Relativistic Quantum Theory in Curved Spacetime. Mathematics. 2025; 13(10):1657. https://doi.org/10.3390/math13101657
Chicago/Turabian StyleFanchi, John R. 2025. "Probabilistic Basis of Parametrized Relativistic Quantum Theory in Curved Spacetime" Mathematics 13, no. 10: 1657. https://doi.org/10.3390/math13101657
APA StyleFanchi, J. R. (2025). Probabilistic Basis of Parametrized Relativistic Quantum Theory in Curved Spacetime. Mathematics, 13(10), 1657. https://doi.org/10.3390/math13101657