Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method
Abstract
:1. Introduction
2. Topology Optimization Model
2.1. Basic Formulation of Frequency Response Analysis
2.2. Topology Optimization Formulation
2.3. Sensitivity Analysis
3. Adaptive SOAR Method
3.1. Second-Order Arnoldi Method (SOAR)
Algorithm 1 [Second-Order Arnoldi method (SOAR)] |
Input: K, M, C Output
|
3.2. Adaptive SOAR Strategy (ASOAR)
- (1)
- Let and ;
- (2)
- Apply the SOAR method at and independently. We can get two subspaces, and . Unless stated, ten basis vectors are used (n = 10) for each expansion point;
- (3)
- Choose and use the two subspaces to calculate the displacement vector and ;
- (4)
- Calculate the error tolerance:
- (5)
- Orthogonalization of the obtained basis vectors.
3.3. Testing of the SOAR and the ASOAR
4. Numerical Examples
4.1. Example 1: Vibration Problem in Frequency Band [0, 500] Hz
4.2. Example 2: Vibration Problem in Frequency Band [0, 2500] Hz
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, G.-D. Recent development in structural design and optimization. Acta Mech. Sin. 2010, 26, 807–823. [Google Scholar] [CrossRef]
- Rozvany, G.I.N. A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 2009, 37, 217–237. [Google Scholar] [CrossRef]
- Liu, S.; Hu, R.; Li, Q.; Zhou, P.; Dong, Z.; Kang, R. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope. Appl. Opt. 2014, 53, 8318–8325. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-H.; Zhang, W.-H.; Xia, L. Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 2015, 23, 595–622. [Google Scholar] [CrossRef]
- Aage, N.; Andreassen, E.; Lazarov, B.S.; Sigmund, O. Giga-voxel computational morphogenesis for structural design. Nature 2017, 550, 84–86. [Google Scholar] [CrossRef]
- Ma, Z.D.; Kikuchi, N.; Hagiwara, I. Structural topology and shape optimization for a frequency response problem. Comput. Mech. 1993, 13, 157–174. [Google Scholar] [CrossRef]
- Jog, C.S. Topology design of structures subjected to periodic loading. J. Sound Vib. 2002, 253, 687–709. [Google Scholar] [CrossRef]
- Sigmund, O. A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 2001, 21, 120–127. [Google Scholar] [CrossRef]
- Shu, L.; Wang, M.Y.; Fang, Z.; Ma, Z.; Wei, P. Level set based structural topology optimization for minimizing frequency response. J. Sound Vib. 2011, 330, 5820–5834. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Gao, L.; Wu, J. An improved parametric level set method for structural frequency response optimization problems. Adv. Eng. Softw. 2018, 126, 75–89. [Google Scholar] [CrossRef]
- Rong, J.H.; Xie, Y.M.; Yang, X.Y.; Liang, Q.Q. Topology Optimization of Structures Under Dynamic Response Constraints. J. Sound Vib. 2000, 234, 177–189. [Google Scholar] [CrossRef]
- Takezawa, A.; Daifuku, M.; Nakano, Y.; Nakagawa, K.; Yamamoto, T.; Kitamura, M. Topology optimization of damping material for reducing resonance response based on complex dynamic compliance. J. Sound Vib. 2016, 365, 230–243. [Google Scholar] [CrossRef]
- Larsen, A.A.; Laksafoss, B.; Jensen, J.S.; Sigmund, O. Topological material layout in plates for vibration suppression and wave propagation control. Struct. Multidiscip. Optim. 2009, 37, 585–594. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, X.; Jiang, S.; Cheng, G. On topology optimization of damping layer in shell structures under harmonic excitations. Struct. Multidiscip. Optim. 2012, 46, 51–67. [Google Scholar] [CrossRef]
- Andreassen, E.; Jensen, J.S. Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multidiscip. Optim. 2014, 49, 695–705. [Google Scholar] [CrossRef]
- Vicente, W.M.; Picelli, R.; Pavanello, R.; Xie, Y.M. Topology optimization of frequency responses of fluid–structure interaction systems. Finite Elem. Anal. Des. 2015, 98, 1–13. [Google Scholar] [CrossRef]
- Olhoff, N.; Du, J. Topological design for minimum dynamic compliance of structures under forced vibration. In Topology Optimization in Structural and Continuum Mechanics; Springer: Vienna, Austria, 2014; pp. 325–339. [Google Scholar]
- Olhoff, N.; Du, J. Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency. Struct. Multidiscip. Optim. 2016, 54, 1113–1141. [Google Scholar] [CrossRef]
- Ferrari, F.; Lazarov, B.S.; Sigmund, O. Eigenvalue topology optimization via efficient multilevel solution of the frequency response. Int. J. Numer. Methods Eng. 2018, 115, 872–892. [Google Scholar] [CrossRef]
- Freund, R.W. Recent Advances in Structure-Preserving Model Order Reduction. In Simulation and Verification of Electronic and Biological Systems; Li, P., Silveira, L.M., Feldmann, P., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 43–70. [Google Scholar]
- Cornwell, R.E.; Craig, R.R., Jr.; Johnson, C.P. On the application of the mode-acceleration method to structural engineering problems. Earthq. Eng. Struct. Dyn. 1983, 11, 679–688. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, B.; Li, Z.; Zhong, H. A method for topology optimization of structures under harmonic excitations. Struct. Multidiscip. Optim. 2018, 58, 475–487. [Google Scholar] [CrossRef]
- Zhao, J.; Yoon, H.; Youn, B.D. An adaptive hybrid expansion method (AHEM) for efficient structural topology optimization under harmonic excitation. Struct. Multidiscip. Optim. 2020, 61, 895–921. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, W.; Gao, T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct. Multidiscip. Optim. 2015, 51, 1321–1333. [Google Scholar] [CrossRef]
- Yoon, G.H. Structural topology optimization for frequency response problem using model reduction schemes. Comput. Methods Appl. Mech. Eng. 2010, 199, 1744–1763. [Google Scholar] [CrossRef]
- Li, Q.; Sigmund, O.; Jensen, J.S.; Aage, N. Reduced-order methods for dynamic problems in topology optimization: A comparative study. Comput. Methods Appl. Mech. Eng. 2021, 387, 114149. [Google Scholar] [CrossRef]
- Demmel, J.W. Applied Numerical Linear Algebra; SIAM: Philadelphia, PA, USA, 1997. [Google Scholar]
- Bai, Z.; Demmel, J.; Dongarra, J.; Ruhe, A.; van der Vorst, H. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Niu, B.; He, X.; Shan, Y.; Yang, R. On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation. Struct. Multidiscip. Optim. 2018, 57, 2291–2307. [Google Scholar] [CrossRef]
- Wang, F.; Lazarov, B.S.; Sigmund, O. On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 2011, 43, 767–784. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 1999, 69, 635–654. [Google Scholar] [CrossRef]
- Sigmund, O. Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 2007, 33, 401–424. [Google Scholar] [CrossRef]
- Bai, Z.; Su, Y. SOAR: A Second-order Arnoldi Method for the Solution of the Quadratic Eigenvalue Problem. SIAM J. Matrix Anal. Appl. 2005, 26, 640–659. [Google Scholar] [CrossRef]
- Bai, Z.; Su, Y. Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method. SIAM J. Sci. Comput. 2005, 26, 1692–1709. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Modulus (MPa) | Poisson Ratio | Damping Ratio |
---|---|---|---|---|
Elastic | 2700 | 69,000 | 0.33 | 0 |
Viscoelastic | 1000 | 59.2 | 0.48 | 0.5 |
Method | FOM | ASOAR | SOAR (EN = 12) | SOAR (EN = 24) |
---|---|---|---|---|
Time cost (s) | 98.43 | 15.91 | 14.32 | 27.89 |
Results | FOM | ASOAR |
---|---|---|
Objective value | 6.112 × 104 | 6.126 × 104 |
Time cost (s) | 1.66× 105 | 7.20 × 103 |
Results | FOM | ASOAR | SOAR (EN = 7) | SOAR (EN = 14) |
---|---|---|---|---|
Objective value | 5.842 × 104 | 5.798 × 104 | 6.192 × 104 | 5.708 × 104 |
Time cost (s) | 3.26 × 105 | 1.94 × 104 | 2.25 × 104 | 4.16 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhou, Y.; Luo, Y. Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method. Mathematics 2025, 13, 1583. https://doi.org/10.3390/math13101583
Qu Y, Zhou Y, Luo Y. Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method. Mathematics. 2025; 13(10):1583. https://doi.org/10.3390/math13101583
Chicago/Turabian StyleQu, Yongxin, Yonghui Zhou, and Yunfeng Luo. 2025. "Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method" Mathematics 13, no. 10: 1583. https://doi.org/10.3390/math13101583
APA StyleQu, Y., Zhou, Y., & Luo, Y. (2025). Structural Topology Optimization for Frequency Response Problems Using Adaptive Second-Order Arnoldi Method. Mathematics, 13(10), 1583. https://doi.org/10.3390/math13101583