A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Interval Analysis
2.2. Model Formulation
2.2.1. Notation
2.2.2. Objective and Constraints
2.2.3. The Multi-Period Portfolio Optimization Model with Interval Numbers
2.3. Solution Methodology
2.4. Case Study: Multi-Period Portfolio Selection Under Interval Uncertainty
- -
- Pessimistic: based on lower bounds for returns and upper bounds for risk.
- -
- Optimistic: using upper bounds for returns and lower bounds for risk.
- -
- Mixed: with average values between bounds, reflecting a neutral risk attitude.
3. Results and Discussion
- -
- Pessimistic: based on lower bounds for returns and upper bounds for risks;
- -
- Optimistic: using upper bounds for returns and lower bounds for risks;
- -
- Mixed: relying on the average of return and risk intervals, reflecting a balanced investor attitude.
- -
- Pessimistic: [1085.32, 1163.77]
- -
- Mixed: [1123.89, 1245.16]
- -
- Optimistic: [1167.42, 1323.55]
4. Conclusions
5. Future Research Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer: New York, NY, USA, 1997. [Google Scholar]
- Ruszczynski, A.; Shapiro, A. Stochastic Programming. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Artzner, P.; Delbaen, F.; Eber, J.M.; Heath, D. Coherent Measures of Risk. Math. Financ. 1999, 9, 203–228. [Google Scholar] [CrossRef]
- Nobibon, F.T.; Guo, H. Emerging Markets: A Financial Analysis. Int. Rev. Financ. Anal. 2006, 15, 233–252. [Google Scholar]
- Barik, S.; Ojha, A.; Das, S. Portfolio Optimization with Liquidity Constraints. Econ. Model. 2012, 29, 1040–1047. [Google Scholar]
- Chinneck, J.W.; Ramadan, K. Linear Programming with Interval Coefficients. Eur. J. Oper. Res. 2000, 124, 292–305. [Google Scholar] [CrossRef]
- Fang, K.T.; Wang, Y. Some Applications of Semi-absolute Deviation in Portfolio Optimization. Appl. Math. Comput. 2006, 175, 602–613. [Google Scholar]
- Li, D.; Ng, W.L.; Li, S. Multi-period Mean-Variance Portfolio Selection with Semi-absolute Deviation. Eur. J. Oper. Res. 2014, 234, 459–468. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, T.C.E.; Wang, Y. Hybrid Portfolio Selection Using Interval and Fuzzy Methods. Fuzzy Optim. Decis. Mak. 2024, 23, 55–76. [Google Scholar]
- Allahdadi, M.; Nehi, H.M. Fuzzy Linear Programming for Portfolio Optimization. Int. J. Ind. Eng. Comput. 2011, 2, 807–818. [Google Scholar]
- Jong, K.S. Fuzzy Multi-objective Portfolio Optimization: A Comparative Study. Eur. J. Oper. Res. 2011, 210, 70–83. [Google Scholar]
- Sheraz, M.; Dedu, S.; Preda, V. Volatility Dynamics of Cryptocurrency Markets: Evidence from Turnover Rates. Financ. Res. Lett. 2022, 45, 102133. [Google Scholar]
- Ishibuchi, H.; Tanaka, H. Multiobjective Programming in Optimization Problems with Fuzzy Parameters. Fuzzy Sets Syst. 1990, 32, 87–94. [Google Scholar]
- Sayin, S.; Kouvelis, P. A Robust Optimization Model for Interval Data. Oper. Res. 2005, 53, 338–354. [Google Scholar]
- Huang, X.; Hwang, C.L. Portfolio Selection with Interval Numbers and Fuzzy Logic. Fuzzy Optim. Decis. Mak. 2023, 22, 241–262. [Google Scholar]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Şerban, F.; Costea, A.; Ferrara, M. Portfolio optimization using interval analysis. Econ. Comput. Econ. Cybern. Stud. Res. 2020, 54, 125–142. [Google Scholar]
- Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Liu, Y.-J.; Zhang, W.-G.; Zhang, P. A multi-period portfolio selection optimization model by using interval analysis. Econ. Model. 2013, 33, 113–119. [Google Scholar] [CrossRef]
- Toma, A.; Dedu, S. Quantitative techniques for financial risk assessment: A comparative approach using different risk measures and estimation methods. Procedia Econ. Financ. 2014, 8, 712–717. [Google Scholar] [CrossRef]
- Alefeld, G.; Herzberger, J. Introduction to Interval Computations; Academic Press: New York, NY, USA, 1983. [Google Scholar]
Asset | Return [t1] | Risk [t1] | Turnover [t1] | Return [t2] | Risk [t2] | Turnover [t2] | Return [t3] | Risk [t3] | Turnover [t3] |
---|---|---|---|---|---|---|---|---|---|
BTC | [0.03, 0.07] | [0.02, 0.05] | [0.1, 0.3] | [0.025, 0.065] | [0.018, 0.045] | [0.1, 0.25] | [0.02, 0.06] | [0.015, 0.04] | [0.1, 0.2] |
ETH | [0.025, 0.06] | [0.022, 0.048] | [0.08, 0.2] | [0.02, 0.055] | [0.02, 0.042] | [0.07, 0.18] | [0.015, 0.05] | [0.018, 0.038] | [0.07 0.16] |
SOL | [0.04, 0.08] | [0.03, 0.06] | [0.12, 0.28] | [0.035, 0.075] | [0.028, 0.055] | [0.1, 0.25] | [0.03, 0.07] | [0.025, 0.05] | [0.09, 0.22] |
BNB | [0.02, 0.05] | [0.015, 0.035] | [0.09, 0.2] | [0.018, 0.045] | [0.018, 0.045] | [0.013, 0.03] | [0.015, 0.04] | [0.01, 0.025] | [0.08, 0.15] |
Strategy | Terminal Wealth |
---|---|
Pessimistic | [1085.32, 1163.77] |
Mixed | [1123.89, 1245.16] |
Optimistic | [1167.42, 1323.55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șerban, F. A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis. Mathematics 2025, 13, 1552. https://doi.org/10.3390/math13101552
Șerban F. A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis. Mathematics. 2025; 13(10):1552. https://doi.org/10.3390/math13101552
Chicago/Turabian StyleȘerban, Florentin. 2025. "A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis" Mathematics 13, no. 10: 1552. https://doi.org/10.3390/math13101552
APA StyleȘerban, F. (2025). A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis. Mathematics, 13(10), 1552. https://doi.org/10.3390/math13101552