A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles
Abstract
:1. Introduction
2. Weights and Class of Potentials
- (H1)
- (i) ;(ii) .
- (H2)
- (H3)
- There exists a constant such that
- (H4)
- The following holds:The class of potentials V that we consider is of the following type:
- , , with
3. Multipolar Hardy-Type Inequalities with Weight
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canale, A.; Pappalardo, F.; Tarantino, C. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Commun. Pure Appl. Anal. 2021, 20, 405–425. [Google Scholar] [CrossRef]
- Canale, A. Multipolar Hardy inequalities and mutual interactionof the poles. Ric. Mat. 2023; preprint. [Google Scholar] [CrossRef]
- Canale, A. Multipolar potentials and weighted Hardy inequalities. Discret. Contin. Dyn. Sist. Ser. S 2024, 17, 2058–2067. [Google Scholar] [CrossRef]
- Canale, A. A class of weighted Hardy type inequalities in RN. Ric. Mat. 2024, 73, 619–631. [Google Scholar] [CrossRef]
- Cabré, X.; Martel, Y. Existence versus explosion instantanée pour des équations de la chaleur lineáires avec potentiel singulier. Comptes Rendus Acad. Sci. 1999, 329, 973–978. [Google Scholar] [CrossRef]
- Goldstein, G.R.; Goldstein, J.A.; Rhandi, A. Kolmogorov equation perturbed by an inverse-square potential. Discret. Contin. Dyn. Syst. Ser. S 2011, 4, 623–630. [Google Scholar] [CrossRef]
- Goldstein, G.R.; Goldstein, J.A.; Rhandi, A. Weighted Hardy’s inequality and the Kolmogorov equation perturbed by an inverse-square potential. Appl. Anal. 2012, 91, 2057–2071. [Google Scholar] [CrossRef]
- Canale, A.; Pappalardo, F.; Tarantino, C. A class of weighted Hardy inequalities and applications to evolution problems. Ann. Mat. Pura Appl. 2020, 199, 1171–1181. [Google Scholar] [CrossRef]
- Felli, V.; Marchini, E.M.; Terracini, S. On Schrödinger operators with multipolar inverse-square potentials. J. Funct. Anal. 2007, 250, 265–316. [Google Scholar] [CrossRef]
- Felli, V.; Terracini, S. Elliptic equations with multi-singular inverse-square potentials and critical nonlinearity. Commun. Part. Differ. Equ. 2006, 31, 469–495. [Google Scholar] [CrossRef]
- Duyckaerts, T. Inégalités de résolvante pour l’opérateur de Schrödinger avec potentiel multipolaire critique. Bull. Soc. Math. France 2006, 134, 201–239. [Google Scholar] [CrossRef]
- Bosi, R.; Dolbeault, J.; Esteban, M.J. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Commun. Pure Appl. Anal. 2008, 7, 533–562. [Google Scholar] [CrossRef]
- Cazacu, C.; Zuazua, E. Improved multipolar Hardy inequalities. In Studies in Phase Space Analysis with Applications to PDEs; Cicognani, M., Colombini, F., Del Santo, D., Eds.; Birkhäuser: New York, NY, USA, 2013; Volume 84, pp. 533–562. [Google Scholar] [CrossRef]
- Cazacu, C. New estimates for the Hardy constants of multipolar Schrödinger operators. Commun. Contemp. Math. 2016, 18, 1–28. [Google Scholar] [CrossRef]
- Devyver, B.; Fraas, M.; Pinchover, Y. Optimal hardy weight for second-order elliptic operator: An answer to a problem of Agmon. J. Funct. Anal. 2014, 266, 4422–4489. [Google Scholar] [CrossRef]
- Jin, Y.; Tang, L.; Shen, S. Optimal Hardy inequalities associated with multipolar Schrödinger operators. arXiv 2021, arXiv:2107.05785. [Google Scholar] [CrossRef]
- Jin, Y.; Tang, L.; Shen, S. Attainability and criticality for multipolar Rellich inequality. arXiv 2024, arXiv:2406.17350. [Google Scholar] [CrossRef]
- Faraci, F.; Farkas, C.; Kristaly, A. Multipolar Hardy inequalities on Riemannian manifolds. Exaim COCV 2018, 24, 551–567. [Google Scholar] [CrossRef]
- Canale, A.; Pappalardo, F. Weighted Hardy inequalities and Ornstein-Uhlenbeck type operators perturbed by multipolar inverse square potentials. J. Math. Anal. Appl. 2018, 463, 895–909. [Google Scholar] [CrossRef]
- Tölle, J.M. Uniqueness of weighted Sobolev spaces with weakly differentiable weights. J. Funct. Anal. 2012, 263, 3195–3223. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canale, A.; Tarantino, C. A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles. Mathematics 2025, 13, 21. https://doi.org/10.3390/math13010021
Canale A, Tarantino C. A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles. Mathematics. 2025; 13(1):21. https://doi.org/10.3390/math13010021
Chicago/Turabian StyleCanale, Anna, and Ciro Tarantino. 2025. "A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles" Mathematics 13, no. 1: 21. https://doi.org/10.3390/math13010021
APA StyleCanale, A., & Tarantino, C. (2025). A Class of Potentials in Weighted Hardy-Type Inequalities with a Finite Number of Poles. Mathematics, 13(1), 21. https://doi.org/10.3390/math13010021